

Privacy-Respecting

Intrusion Detection

Advances in Information Security

Sushil Jajodia
Consulting Editor

Center for Secure Information Systems

George Mason University

Fairfax, VA 22030-4444

email: jajodia@gmu.edu

The goals of the Springer International Series on ADVANCES IN INFORMATION
SECURITY are, one, to establish the state of the art of, and set the course for future research
in information security and, two, to serve as a central reference source for advanced and
timely topics in information security research and development. The scope of this series
includes all aspects of computer and network security and related areas such as fault tolerance
and software assurance.

ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive
overviews of specific topics in information security, as well as works that are larger in scope
or that contain more detailed background information than can be accommodated in shorter
survey articles. The series also serves as a forum for topics that may not have reached a level
of maturity to warrant a comprehensive textbook treatment.

Researchers, as well as developers, are encouraged to contact Professor Sushil Jajodia with
ideas for books under this series.

Additional titles in the series:

ISBN: 978-0-387-32724-2
SECURE DATA MANAGEMENT IN DECENTRALIZED SYSTEMS edited by Ting Yu
and Sushil Jajodia; ISBN: 978-0-387-27694-6
NETWORK SECURITY POLICIES AND PROCEDURES by Douglas W. Frye; ISBN: 0-
387-30937-3
DATA WAREHOUSING AND DATA MINING TECHNIQUES FOR CYBER SECURITY

by Anoop Singhal; ISBN: 978-0-387-26409-7
SECURE LOCALIZATION AND TIME SYNCHRONIZATION FOR WIRELESS

SENSOR AND AD HOC NETWORKS edited by Radha Poovendran, Cliff Wang, and Sumit
Roy; ISBN: 0-387-32721-5
PRESERVING PRIVACY IN ON-LINE ANALYTICAL PROCESSING (OLAP) by Lingyu
Wang, Sushil Jajodia and Duminda Wijesekera; ISBN: 978-0-387-46273-8
SECURITY FOR WIRELESS SENSOR NETWORKS by Donggang Liu and Peng Ning;
ISBN: 978-0-387-32723-5
MALWARE DETECTION edited by Somesh Jha, Cliff Wang, Mihai Christodorescu, Dawn
Song, and Douglas Maughan; ISBN: 978-0-387-32720-4
ELECTRONIC POSTAGE SYSTEMS: Technology, Security, Economics by Gerrit
Bleumer; ISBN: 978-0-387-29313-2
MULTIVARIATE PUBLIC KEY CRYPTOSYSTEMS by Jintai Ding, Jason E. Gower and
Dieter Schmidt; ISBN-13: 978-0-378-32229-2
UNDERSTANDING INTRUSION DETECTION THROUGH VISUALIZATION by
Stefan Axelsson; ISBN-10: 0-387-27634-3

Additional information about this series can be obtained from
http://www.springer.com

)SYNCHRONIZING INTERNET PROTOCOL SECURITY (SIPSec) by Charles A.
Shoniregun;

Privacy-Respecting

Intrusion Detection

by

Ulrich Flegel
University of Dortmund

Germany

1 3

Dr. Ulrich Flegel
University of Dortmund
Department of Computer Science
44221 DORTMUND
GERMANY

Ulrich.Flegel@CS.Uni-Dortmund.DE

Library of Congress Control Number: 2007930043

Privacy-Respecting Intrusion Detection by Ulrich Flegel

Printed on acid-free paper.

 2007 Springer Science+Business Media, LLC.
All rights reserved. This work may not be translated or copied in whole or
in part without the written permission of the publisher (Springer
Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and
similar terms, even if the are not identified as such, is not to be taken as an
expression of opinion as to whether or not they are subject to proprietary
rights.

9 8 7 6 5 4 3 2 1

springer.com

e-ISBN 978-0-387-68254-9 ISBN 978-0-387-34346-4

Contents

Part I Introduction and Background

1 Introduction . 3

2 Authorizations . 9

3 An Architectural Model for Secure Authorizations 13

4 Traditional Security Objectives . 27

5 Personal Data Protection Objectives . 31

6 Technical Enforcement of Multilateral Security 43

7 Pseudonyms – A Technical Point of View . 47

8 An Architectural Model for Pseudonymous Authorizations . . 55

9 Comparing Architectures . 65

10 Audit Data Pseudonymization . 77

Part II Set-based Approach

11 Requirements, Assumptions and Trust Model 91

VI Contents

12 Modeling Conditions for Technical Purpose Binding 97

13 Cryptographic Enforcement of Disclosure Conditions 103

14 The Mismatch Problem . 109

15 Operational Pseudonymization and Pseudonym Disclosure . . . 115

16 Extensions . 123

Part III Application to Unix Audit Data

17 Unix Audit Data . 137

18 Syslog . 141

19 Instantiating the Set-based Approach for Syslog Audit Data . 147

20 Implementation: Pseudo/CoRe . 159

Part IV Evaluation

21 APES: Anonymity and Privacy in Electronic Services 171

22 Evaluating the Design Using Basic Building Blocks 177

23 Evaluating the Performance of the Implementation 187

Part V Refinement of Misuse Scenario Models

24 Motivating Model Refinements . 199

25 Models of Misuse Scenarios . 203

26 Pseudonymization Based on Serial Signature-Nets 229

27 Pseudonym Linkability . 233

Contents VII

28 Pseudonym Disclosure . 247

Summary . 283

A Threshold Schemes for Cryptographic Secret Sharing 285

References . 287

Index . 303

List of Figures

3.1 A classification of properties . 14
3.2 Relationships between property statements and entities 17
3.3 Verification of property statements . 17
3.4 Basic model . 18
3.5 A classification of property attributes . 20
3.6 Converting property attributes . 20
3.7 Relationships between security objectives and property attributes 22
3.8 Relationships between the subject, its interests and its privileges . 22
3.9 The authorizer obtains a referenced certificate 24
3.10 The authorizer forwards the service request to the service 24
3.11 The authorizer sends an authorization to the service 24
3.12 The certifier forwards the service request to the authorizer 24

5.1 Concepts of the German Census Decision . 35

8.1 Unilateral security: accountability . 60
8.2 Unilateral security: management anonymizes 60
8.3 Multilateral security: certification of pseudonyms 61
8.4 Multilateral security: authorization of pseudonyms 61
8.5 Multilateral security: pseudonymization of audit data 62
8.6 Purpose binding of controlled pseudonym disclosure 62

11.1 Trust and control in the architectural model of our approach 92

X List of Figures

12.1 An example abstract event . 99
12.2 Decision tree for assigning disclosure contexts and weights to

feature types . 102

14.1 A mismatch: a set of incompatible shares matches a secret 110

15.1 Associations and dependencies between conceptual elements 116
15.2 Data flow between the pseudonymizer and the reidentifier 117

16.1 Data flow between the extended pseudonymizer and reidentifier . . 124
16.2 Simplified architectural model due to an extension 127

17.1 Solaris audit components . 138

18.1 Sample Syslog audit records . 142
18.2 Parts of a sample Syslog audit record . 142
18.3 Pseudonymizing Solaris audit data . 145

19.1 Syntactical concepts in a sample Syslog audit record 148
19.2 A sample Syslog audit record . 151
19.3 A pseudonymized Syslog audit record with pseudonymity-layer

data . 151
19.4 Trust and control in the architectural model of the applied

approach . 153
19.5 Architectures integrating pseudonymization with Syslog 156

22.1 Decomposing our approach into building blocks 179

23.1 Performance measurements of the cryptographic components 189
23.2 Performance measurements of the pseudonymizer 191
23.3 Server statistics: number of audit records generated per hour 194
23.4 The day when FTP went wild . 194

25.1 Symbols for (non)-consuming edges . 211
25.2 Symbols for types of places . 212
25.3 Symbols for transitions and transition labels with an example 213
25.4 Symbols for events and tokens as well as token bindings 215

List of Figures XI

25.5 Marking before any transitions occur . 218
25.6 Marking after two transitions occurred . 219
25.7 Marking after all activated transitions have occurred 220
25.8 An example serial signature-net . 223
25.9 Emulating disjunctions . 224
25.10Emulating conjunctions and spontaneous transitions 225
25.11Emulating repetitions . 226

26.1 Trust and control in the architectural model of the fine-grained
approach . 230

27.1 Linkability requirements graph for a serial signature-net 239
27.2 Example operation of the pseudonymizer (only linkability) 244
27.3 Example operation of the analysis engine (only linkability) 245

28.1 Disclosure requirements graph for a serial signature-net 253
28.2 Example disclosure contexts with scheme descriptions 264
28.3 Example disclosure contexts with instantiated threshold schemes . 265
28.4 Example operation of the pseudonymizer (linkability and

disclosure) . 274
28.5 Example operation of the analysis engine (linkability and

disclosure) . 280

List of Tables

9.1 Summary of architecture properties . 65

10.1 Summary of the properties of selected approaches 80

13.1 Application of Shamir’s threshold scheme for secret sharing 107

14.1 Properties of the proposed mismatch handling approaches 111

19.1 Mapping observations from abstract events to Syslog events 149

21.1 Basic anonymity building blocks . 174

22.1 Basic anonymity building blocks used in our approach 182

23.1 Default values for the parameters and how they were varied 190
23.2 Influence of the key length on encryption and secret sharing 192
23.3 Influence of the communication technique . 192
23.4 Maximum number of audit records generated per second 195

25.1 Semantic requirements for models of misuse scenarios 207
25.2 Semantic requirements met by signature-nets 221
25.3 Semantic requirements met by serial signature-nets 227

Foreword

Computer and network security is an issue that has been studied for many years.
The Ware Report, which was published in 1970, pointed out the need for com-
puter security and highlighted the difficulties in evaluating a system to determine
if it provided the necessary security for particular applications. The Anderson
Report, published in 1972, was the outcome of an Air Force Planning Study
whose intent was to define the research and development paths required to make
secure computers a reality in the USAF. A major contribution of this report
was the definition of the reference monitor concept, which led to security kernel
architectures. In the mid to late 1970s a number of systems were designed and
implemented using a security kernel architecture. These systems were mostly
sponsored by the defense establishment and were not in wide use.
Fast forwarding to more recent times, the advent of the world-wide web, inexpen-
sive workstations for the office and home, and high-speed connections has made
it possible for most people to be connected. This access has greatly benefited
society allowing users to do their banking, shopping, and research on the Inter-
net. Most every business, government agency, and public institution has a public
facing web page that can be accessed by anyone anywhere on the Internet. Un-
fortunately, society’s increased dependency on networked software systems has
also given easy access to the attackers, and the number of attacks is steadily
increasing. These attacks result in the disclosure and/or destruction of sensitive
data, productivity loss, and large financial losses. Therefore, there is a need to
protect our computers and networks from attack.
For many years the goal of the security community was to build systems that
were 100% secure. In the early days of computing when standalone systems were
used by one user at a time, computer security consisted primarily of physical
security. That is, the computer and its peripherals were locked in a secure area
with a guard at the door that checked each user’s identification before allowing
them to enter the room. Unfortunately, as computers and computer applications
got more complex and thousands, and even millions, of systems were connected to
one another, protecting these networked systems became a daunting task. Even

XVI Foreword

with the most advanced protection, computer systems are still not 100% secure.
In fact, most security experts agree, that, given all of the desirable user features,
such as network connectivity, the goal of having a completely secure system will
never be achieved. Since systems that are 100% secure cannot be built, it is
necessary to use other approaches to protect computer systems from misuse and
attacks. One approach is to develop intrusion detection techniques and systems
to discover and react to computer attacks. Intrusion detection systems analyze
the actions performed by users and applications looking for evidence of malicious
activities. This usually requires user behavior to be recorded in audit data.
The incredible growth in the use of the Internet also resulted in an increase
in the number of privacy vulnerabilities. As users were given online access to
their bank accounts, health records, and shopping portals, the demand for more
user friendly interfaces increased. To make these systems more user friendly,
personal information, such as shopping preferences, and even credit card and
social security numbers, were collected and stored on the systems. Unfortunately,
the same information that is used to make access more efficient and user friendly
is also accessible to the attackers. As a result, the number of attacks aimed at
accessing personal data has also increased dramatically. These attacks range from
the release of embarrassing personal information to identity theft and personal
financial losses.
The issue of privacy, like computer security, has been studied for many years.
In 1977, the Privacy Protection Study Commission issued a report entitled Per-
sonal Privacy in an Information Society. The issue of privacy is also not new to
the computer security community. In 1980 when the IEEE Security & Privacy
Symposium began, Privacy was a prominent part of its name. Unfortunately, the
reality is that for many years the conference only paid lip service to privacy. In
1980 only 1 of the 19 papers presented at the conference was a privacy paper. In
1981 the count was 0 of 18, and in 1982 it was 1 of 20. It is only in the last few
years that privacy has come to the forefront of the security community. In fact,
there are now many computer science conferences that are primarily concerned
with privacy issues.
The relationship between intrusion detection and privacy is particularly interest-
ing. In order to analyze the actions performed by users and applications intru-
sion detection systems need to collect and retain data about a user’s behavior.
In contrast, privacy is concerned with the right of individuals to determine if,
when, how, and to what extent data about themselves will be collected, stored,
transmitted, used, and shared with others. Clearly there is a tension between
these two. That is, to do a good job of detecting malicious behavior an intrusion
detection system needs to collect personal information, but to protect an indi-
vidual’s privacy the amount and type of data collected must be controlled. One
approach to easing the tension between the accountability needed for intrusion
detection and the protection of personal data is the use of anonymity. That is,
approaches that anonymize personal information to protect a user’s privacy must
be adapted.

Foreword XVII

This book addresses the tension between personal privacy and security. The
author proposes a balance between the security objective of accountability and
the privacy objective of anonymity. The solution put forth is the concept of
technical purpose binding. The idea is to pseudonymize audit data in a way
that allows misuse detection to be performed as efficiently as if it were using
the original audit data. The binding also allows the original personal data to be
recovered only when malicious behavior is detected and a response is necessary.
The result is privacy respecting intrusion detection.

Richard A. Kemmerer
Computer Science Department
University of California, Santa Barbara
Santa Barbara, April 2007

Acknowledgements

As is probably true of most technical books, this one owes a great many thanks
to many individuals who have helped me in various ways. Several people have
stimulated or influenced some of the technical content in this book or even con-
tributed technical results, for which all the credit is due to them.
This book was written during my time as research associate at the University
of Dortmund in the research group of Joachim Biskup. He inspired this work
from the beginning and believed in its importance. I benefited greatly from his
considerable experience in the field. Without his patient guidance, his broad-
mindedness and his generous support this book would not have been possible.
In particular Michael Meier’s expertise on and experience with misuse detection
was most valuable for developing the last part of this book. During countless
meetings around workshops and conferences and during several visits in Dort-
mund and Cottbus we discussed the expressiveness of models for misuse detec-
tion. Our fruitful collaboration culminated in a general framework for modeling
misuse scenarios.
I am also grateful to my former colleague Frank Müller, who studied the mis-
match problem in detail and came up with a novel approach for share invali-
dation, which is described in the second part of this book. My thanks go also
to Heike Neumann for influential discussions on mismatch avoidance, to Ste-
fan Köpsell for pointing out the importance of share invalidation, and to Yücel
Karabulut for sharing his views on authorization models.
During my work on this book numerous people encouraged and supported
me and I am grateful to all of them. I resist the temptation of assembling an
exhaustive list, since it is foreseeable that it would be incomplete.

Ulrich Flegel
Dortmund, May 2007

Part I

Introduction and Background

The first Part gives an introduction to this book and provides the background for
the proposed solutions. Chapter 1 motivates this work and briefly characterizes
all Parts of this book. Starting from authorizations in the real/physical world
Chap. 2 derives conditions for trust and control for an appropriate architectural
model for secure authorizations. Such a model is presented in Chap. 3. The no-
tion of security captured by the model is examined in Chap. 4, ascertaining that
the aspect of user privacy is poorly supported. Privacy aspects are examined
in detail in Chap. 5. A balance of the conflicting security objective of account-
ability and of the privacy objective of anonymity is proposed in Chap. 6 on the
basis of pseudonyms. Legal aspects are considered as the foundation for the pro-
posed approaches, and the main assumptions for legal audit data analysis and
pseudonym disclosure are identified in Chap. 6. The more technically inclined
aspects of pseudonyms are investigated in Chap. 7. In Chap. 8 pseudonyms are
integrated with the architectural model from Chap. 3. The distinct architectures
possible in the model are compared in Chap. 9, and it is shown, how the model
can be used to classify privacy-enhancing technologies (PETs). Related work on
PETs is separated into loosely and closely related work. A comparison of closely
related work is given in Chap. 10 and selected approaches are described in some
detail. Finally, the distinction of our approaches from existing work is distilled
in Chap. 10.

1

Introduction

Along with the growing dependence of our society on information technology
systems (IT), issues regarding IT security are becoming more urgent. While until
recently in practice primarily preventive safeguards were deployed, it becomes
more and more apparent that IT security cannot be achieved by prevention
alone. Rather, preventive safeguards and reactive aspects need to complement
one another.
To be able to react to violations of a given security policy, one needs to detect
such violations in the first place. We acknowledge that violations of security
policies may come in many forms, however, for the remainder of this book we
subsume such violations under the term of misuse. While the history of scientific
research on the detection of misuse goes back to the seminal work of Anderson
in 1980 [5], only recently software for detecting misuse is widely available and in
use. Such software systems are commonly denoted as intrusion detection systems
(IDSs).1 While commercial IDS products are available today, they notoriously
stay behind the expectations of their users. Hence, research in this area is an on-
going effort of the scientific community that has been strongly intensified during
the recent years. Nowadays, there are even two international conferences devoted
to this area, annually bringing together leading scientists and experts (RAID2

since 1998 [57] and DIMVA3 since 2004 [95]).

1 Commercial vendors nowadays are marketing their software as intrusion prevention
systems (IPS). This term denotes an IDS that is supposed to respond to detected
misuse attempts by disrupting the ongoing misuse attempt. Such automated response
is a doubled-edged sword, if it relies on unauthenticated data, possibly resulting in
self-inflicted denial of service.

2 Annual International Symposium on Recent Advances in Intrusion Detection
3 Annual International Conference on Detection of Intrusions, Malware & Vulnerabil-

ity Assessment

4 1 Introduction

While today the importance of detecting misuse and appropriately responding
to detected misuse is widely acknowledged4 and many scientists devote their
work to better detection capabilities, the interplay of intrusion detection with
the privacy of IT system users is largely neglected.
The interplay of intrusion detection and privacy stems from the working prin-
ciple of IDSs, which observe activity occurring in the IT system, record these
observations in audit data and analyze the collected audit data to detect misuse.
Advanced IDSs search the audit data for certain patterns of audit records, and
to do so, must be able to correlate audit records by means of certain features
in the audit data. In other words, it is necessary that the IDS can link certain
features in distinct audit records by the content of the features. These features
are said to be linkable.
System activity is mostly driven by user activity, such that observations recorded
in audit data almost necessarily document user behavior. As a result of the
analysis methods used and certain international standards for generating audit
data, this data mostly contains identifying features of the system users. Hence,
audit data contains personal data of the system users.
In most western countries personal data is protected by privacy law. Users desire
and expect their personal data to be protected against collection and process-
ing, unless authorized by the user himself or by law. Hence, the collection and
processing of audit data for intrusion detection conflicts with the expectation
and the rights of the system users. This conflict calls for a solution providing an
acceptable balance between the privacy of the users and the interests followed
by introducing an IDS.
An approach to balancing these interests is replacing identifying features in au-
dit data with pseudonyms. The IDS analyzes pseudonymized audit data, such
that the privacy of the users is not affected. To sustain the IDS’s capability to
analyze the pseudonymized audit data, a certain amount of linkability must be
retained in the audit data, such that audit records can be correlated by means
of pseudonymized features. However, the more pseudonyms are (transitively)
linkable in the audit data, the larger is the working surface of an attacker to
link pseudonyms to some identifying feature or to draw conclusions about the
activity of certain users. Hence, it is desirable to reduce pseudonym linkability.
If pseudonym linkability is technically reduced to the amount necessary for mis-
use detection w.r.t. to a given set of misuse scenario models, the pseudonym
linkability is said to be technically bound to the purpose of analysis for misuse
detection.
When the IDS detects some misuse, an appropriate response may involve the
original identifying features that were concealed by the pseudonyms. The pro-
cess of recovering the original feature concealed by a pseudonym is denoted as
pseudonym disclosure. Certainly, it is desirable to allow only the disclosure of the
4 The German Informatics Society (GI) in 2002 even founded the special interest group

Security – Intrusion Detection and Response (SIDAR) focusing on this topic.

1.1 Overview 5

pseudonyms of users, who are involved in a detected misuse scenario. If pseudo-
nym disclosure is technically limited to the pseudonyms involved in a detected
misuse scenario, the pseudonym disclosure is said to be technically bound to the
purpose of misuse response.
Since Fischer-Hübner’s seminal work in 1993 [79], which provides a basic ap-
proach, no significant progress has been made in this area, despite a growing
need for working solutions. Previous work does not reduce pseudonym linka-
bility and notoriously does not limit pseudonym disclosure, alas, rendering the
effort of pseudonymization basically useless.
This work is primarily motivated by the urgent need for and the gaping lack
of working solutions in this area. This book introduces the concepts of tech-
nical purpose binding for pseudonym linkability and pseudonym disclosure and
presents novel, secure and workable solutions to pseudonymize audit data to be
analyzed for privacy respecting misuse detection.
There are basically two fundamentally distinct approaches to intrusion detec-
tion, distinguished by the behavior that is modeled as a reference for detecting
misuse. If an IDS uses models of normal behavior e.g. of users, programs, or
protocols, to detect deviations from these models, then the detection approach
is denoted as anomaly detection. If an IDS uses models of attacker behavior,
i.e. models of misuse scenarios, to detect misuse, then the detection approach is
denoted as misuse detection. The distinguishing properties of these fundamen-
tally different approaches are well understood and documented in detail in many
publications, e.g. in the book by Krügel et al. [131]. This book investigates audit
data pseudonymization for misuse detection. Similar solutions as proposed in
this work may also apply to anomaly detection.

1.1 Overview

This book is structured in five parts. The first Part comprises this introduction
and provides the background for the technical solutions. The second Part is
devoted to presenting a coarse-grained approach for pseudonymizing audit data.
The third Part demonstrates how the approach can be applied to audit data of
operational systems in practice and describes an implementation. In the fourth
Part the soundness of the approach is informally analyzed and the performance of
the implementation is experimentally evaluated. After having demonstrated the
soundness and usefulness of the coarse-grained approach, a fine-grained approach
is developed in the fifth Part. The book concludes with a summary of the key
contributions and conclusions.
An appendix provides the necessary background on threshold schemes for cryp-
tographic secret sharing. Several figures in this book use graphical elements of
the Unified Modeling Language (UML). The books of Rumbaugh, Jacobson and
Booch may serve as a useful reference [21, 192].

6 1 Introduction

Part I: Background

The background of this text is introduced step-by-step, while developing an
architectural model for secure authorizations. The model is used to derive fun-
damental requirements for our solutions, and to review related work.
Starting from authorizations in the real/physical world Chap. 2 derives condi-
tions for trust and control for the architectural model, which is developed in
Chap. 3. The notion of security captured by the model is examined in Chap. 4,
ascertaining that the aspect of user privacy is still poorly supported.
The missing privacy aspects are examined in detail in Chap. 5, and a balance of
the conflicting security objective of accountability and of the privacy objective
of anonymity is proposed in Chap. 6 on the basis of pseudonyms.
The legal aspects of pseudonyms for the protection of personal data are con-
sidered as the foundation for the solutions presented in this book. The main
assumptions for analyzing pseudonymized data and for pseudonym disclosure
are identified in Chap. 6. Binding pseudonym disclosure to a legal purpose is a
central concept for the protection of personal data.
The more technically inclined aspects of pseudonyms are investigated in Chap. 7,
introducing the concept of technical purpose binding of pseudonym disclosure
and pseudonym linkability. Pseudonyms are integrated with the architectural
model in Chap. 8.
For the extended model criteria are derived in Chap. 9, which are used to com-
pare distinct architectures that are possible in the model. An architecture where
audit data is pseudonymized after being generated provides a pragmatic and yet
secure solution, while coming at low deployment costs when compared to other
architectures. The solutions presented in this book leverage this advantageous
architecture.
Also, the model is used to review related work, distinguishing loosely and closely
related work. Closely related work implements the aforementioned architecture.
Chapter 10 compares closely related work, and reviews selected approaches in
some detail. Finally, the distinction of our solutions from existing work is distilled
in Chap. 10.

Part II: Set-based Approach

Part II is devoted to a coarse-grained approach for pseudonymizing audit data,
where the pseudonym disclosure is subject to technical purpose binding.
First, in Chap. 11 the assumptions, requirements and the trust model of the
approach are derived from Part I. Second, a set-based framework for modeling
conditions for the purpose binding of controlled pseudonym disclosure is defined

1.1 Overview 7

in Chap. 12. Third, Chap. 13 demonstrates how the modeled disclosure condi-
tions can be securely enforced by cryptographic means.
A new problem emerges due to the way we apply a certain cryptographic prim-
itive. The so-called mismatch problem is described, analyzed and solved in
Chap. 14. Chapter 15 ties together the developed solutions and informally pro-
vides an algorithm implementing the set-based approach. Eventually, Chap. 16
presents extensions to the approach, some of which will be used in Part III.

Part III: Application to Audit Data

This Part demonstrates how the approach from Part II can be applied to audit
data of operational systems in practice.
Chapter 17 gives on overview of the relevant concepts of audit data and of an
audit architecture. The widely-used audit service syslog is described in the some
detail in Chap. 18, and it is shown in Chap. 19 how the approach from Part II can
be instantiated for syslog-style audit data. An according implementation called
Pseudo/CoRe has been developed and is briefly described in Chap. 20.

Part IV: Evaluation

Part IV evaluates the design of the set-based approach and the performance of
the implementation Pseudo/CoRe from Part II and Part III, respectively.
For the evaluation of the design we use the basic building blocks for anonymity
defined in the project Anonymity and Privacy in Electronic Services (APES)
[71]. In Chap. 21 we introduce the APES project and motivate the use of basic
building blocks for anonymity. In Chap. 22 we decompose our design into basic
building blocks for anonymity and consider the remaining building blocks for
further improvement. The informal evaluation indicates that the design is sound
with respect to the given requirements and that it contains no deficiencies.
We also evaluate the performance of the implemented toolset Pseudo/CoRe.
The performance evaluation in Chap. 23 demonstrates that the implementation
is able to handle real-world audit data volumes in practice.

Part V: Model Refinement

Part V refines the modeling framework for pseudonym disclosure conditions de-
fined in Part II and provides appropriate solutions for audit data pseudonymiza-
tion. Due to the general nature of the refined modeling framework the results
are widely applicable to existing and future misuse scenarios and IDSs.
Two limitations of the coarse-grained pseudonymization approach developed in
Part II and implemented in Part III are identified in Chap. 24. It is proposed

8 1 Introduction

to develop a superior approach for fine-grained pseudonymization that is tightly
bound to models of misuse scenarios used by IDSs.
An appropriate Petri-Net-based framework for modeling misuse scenarios is pre-
sented in Chap. 25. Based on a carefully restricted version of the framework an
approach to fine-grained audit data pseudonymization is introduced in Chap. 26.
The issues of pseudonym linkability and pseudonym disclosure are investigated
in detail in Chap. 27 and Chap. 28, respectively. By exploiting knowledge in given
models of misuse scenarios (from the given knowledge-base of an IDS), pseudo-
nym linkability and pseudonym disclosure are tightly tailored to the models and
to the analysis algorithm of the IDS.

2

Authorizations

Section 2.1 motivates to examine trust and safeguards for authorizations by using
examples from the real, i.e. physical, world in order to develop an analogous
model for authorizations in the digital world, starting with an example of real-
world authorizations in Sect. 2.2. Necessary conditions for trust and control
are considered in Sect. 2.3. The constructions used in Sect. 2.2 are mapped to
constructions in the digital world in Sect. 2.4 and elaborated as a model for
secure authorizations in Chap. 3.

2.1 From the Real World to the Digital World

Many safeguards in the digital world mimic safeguards in the real/physical world.
The reason probably is that safeguards are necessary if the actors do not trust
each other. However, at the end of the day, trust is finally anchored in the real
world.
In the following, we consider trust and safeguards in the real world to understand
the models presented in this Part. The models in turn help us to classify and dis-
tinguish available privacy-enhancing technologies in the digital world and to infer
their properties. While the exposition in the first seven Chapters of this Part has
a wide scope, the models are developed to focus on audit data pseudonymization.

2.2 Visiting the Zoo – Example Real-world Authorizations

Using an example it is shown how we deal with trust in the real world. In
the following, we describe the case of a student who wants to visit the zoo.
In the example the zoo serves as a service provider offering free admission to
students. Non-students might feel tempted to defraud the zoo by pretending to

10 2 Authorizations

be a student in order to obtain free admission. Hence, the personnel at the zoo
ticket booth is instructed not to trust statements that customers make about
their own property as a student. For customers it is thus insufficient claiming to
be a student, also because the ticket booth personnel cannot verify the statement
without considering supporting documents. Instead, it is required to show a valid
student ID.
The student ID is used as a certified property statement that assigns the name of
the subject of the statement to the property student. The name of the university
is stated as the agent that is responsible for the correct assignment. An embedded
picture indicates that the subject name actually is the name of the person visually
matching the person on the picture. Finally, the property statement comprises
information regarding its validity, e.g. expiry, and features of genuineness that
are expensive to counterfeit. At the ticket booth a certified property statement
is accepted, if: it is a student ID, as a matter of policy the issuing university
is trusted to generate useful property statements, the person on the picture
visually matches the presenting person, the student ID has not yet expired and
looks “genuine”.
If the student ID is accepted at the ticket booth, the presenting person is autho-
rized to pass the zoo entrance. The presenting person receives the service-specific
property authorized for zoo entrance. At the zoo entrance, again, it is insufficient
claiming to be authorized for zoo entrance. The lack of trust, again, is reasonable,
since anyone could defraud the zoo by cheating in order to pass the entrance for
free. Therefore customers that are authorized for zoo entrance receive an admis-
sion ticket at the ticket booth. This authorization comprises a ticket number,
the statement that it authorizes for zoo entrance, identifies the issuing ticket
booth, validity information, such as features of genuineness that are expensive
to counterfeit1 and expiry. The ticket is accepted at the zoo entrance if: the
stated ticket booth is trusted to issue tickets only to persons that are authorized
for zoo entrance, the ticket number looks “plausible”, the ticket authorizes to
pass the zoo entrance, it has not yet expired and looks “genuine”. Note, that the
ticket contains no information to authenticate the presenting person, i.e. it is
transferable. Further possibilities for cheating are hinted at by the apostrophes
(“. . . ”).
If the admission ticket is accepted at the zoo entrance, the student may enter the
zoo. Right in the front is a sign that specifies behavior that is by policy prohibited
in the zoo. Most notably, it is prohibited to tease the monkeys, since they may
take revenge using banana peel projectiles. It is highly unlikely that anyone will
responsibly certify that the student will avoid all prohibited behavior, i.e. that
the student has the property policy-compliant-behavior. Thus, for the time being,
the zoo trusts that the visitors stick to the rules. At critical areas (at the monkey

1 That is, the cost of counterfeiting the validity information is higher than the admis-
sion price.

2.4 Real-World Counterparts in the Digital World 11

house) the zoo may put a guard in place. The guard observes the behavior of
the visitors and reacts if he detects a violation of the zoo policy.

2.3 Trust and Control

Section 2.2 describes two situations where service-specific givers (here: zoo ticket
booth, zoo entrance) give something. The process of giving is subject to condi-
tions over properties as defined by the policy of the giver (here: student, au-
thorized for zoo entrance). If the taker can put the giver at a disadvantage by
cheating w.r.t. the properties required by the giver, the giver cannot rely on the
respective property statements of the taker. Instead, the giver wishes to verify
by himself the required properties of the taker. Only then he knows that the
taker enjoys the required property, and the giver himself can assign the prop-
erty to the taker. In case the giver cannot carry out the verification by himself,
he needs to trust a third party (here: university, zoo ticket booth) to carry out
the verification, to assign the property statement to the taker and to provide it
with features of genuineness that are expensive to counterfeit (here: student ID,
admission ticket), i.e. to responsibly certify the property statement. Using ap-
propriate property statements the third party trusted by the giver may delegate
the verification and certification to other parties that it trusts. Delegation and
licensing are not within the scope of this text, however, they integrate seamlessly
with the models we present [18, 19, 125].
Since the taker may be interested in corrupting the process of certification, he
must not be able to control the trusted third party. Specifically, only the trusted
third party must be able to provide the property statements that it certifies
with features of genuineness. If these requirements are satisfied, the giver can
trust that the required property in a certified property statement exists and is
correctly assigned to the taker.
In some environments or applications it is impossible or not intended to employ
property verification preventively, e.g. to enforce compliance of behavior with a
certain policy. In these environments or applications, taking will be prohibited or
sanctioned if the property policy-compliant-behavior is violated. That is, for the
time being, the giver needs to trust that the taker enjoys the required property
and he may observe (here: guard) the taker‘s behavior at critical areas (here:
monkey house) to detect violations of the policy.

2.4 Real-World Counterparts in the Digital World

In the digital world the preventive property verification using certified property
statements corresponds to access control, e.g. using a public key infrastructure

12 2 Authorizations

(PKI). Also in the digital world it is not always useful or possible to preven-
tively verify all properties, such as policy compliance of behavior of the users or
processes of an IT system. However, the IT system can record the observable be-
havior in the form of audit data, which can be analyzed w.r.t. policy violations,
e.g. using intrusion detection systems (IDS) [147, 3, 6].

3

An Architectural Model for Secure
Authorizations

Chapter 2 motivated trust issues and safeguards for authorizations in the digital
world. In this Chapter an appropriate architectural model for secure authoriza-
tions is presented. The notion of security supported by the model is further
examined in Chap. 4.
In the following, an architectural model for secure authorizations is introduced.
The model generalizes from the hybrid PKI model of Biskup and Karabulut
[18, 19, 125] by abstracting from PKI-specific technology. The exposition focuses
on the parties that are communicating directly with the service user. Licensing,
delegation and the various modes of interaction, as defined by Biskup and Karab-
ulut, are not described, they work just as in the hybrid PKI model [18, 19, 125].
The model for secure authorizations is already prepared for the extensions we
make for pseudonymization in Chap. 8.
In the digital world neither the corresponding entities of the real world, nor
their properties are visible. Therefore entities (see Sect. 3.1) of the real world are
represented by so-called principals in the digital world, and their real properties
(see Sect. 3.2) are encoded by property attributes that are visible in the digital
world. The relationship between an entity and its properties is expressed by
property statements in the digital world (see Sect. 3.3), where the validity of the
association of a principal with a property attribute is based on cryptography and
on private parameters of the agent that is responsible for the certification of each
property statement (responsible agent). The authentication of the presenter of a
property statement, i.e. the process of verifying that the subject of a property
statement corresponds to its presenter, is based on cryptography and on private
parameters of the subject. At the end of the day, the question whether a digital
property statement really represents properties of an entity in the real world,
can only be decided w.r.t. individually and subjectively justified belief, i.e. trust
enjoyed by the responsible agent.
The basic model for authorization architectures and the corresponding control
requirements are introduced in Sect. 3.4, as well as the verification of and refer-

14 3 An Architectural Model for Secure Authorizations

ences to property statements. In the same Section, the model, the three phases
of service utilization and the accompanying property attribute conversion are
described in detail. Finally, in Sect. 3.5 some versions of the basic model are
motivated by example architectures that are relevant in practice.

3.1 Entities and Properties

In the proposed model individuals, computers and other players in a distributed
IT system are denoted as entities. A principal is a bit string that is unique
within its scope of application and it is associated with an entity to serve as its
surrogate. An entity can enjoy properties, which in turn may be used in conditions
in authorization policies, and are taken into account during the trust evaluation.
Biskup and Karabulut distinguish characterizing and administrative properties
[18, 125] (see Fig. 3.1). While the first characterize the users, the latter describe
the responsible agents in the case of licensing and delegation. Administrative
properties and corresponding property attributes, as well as property statements
are not considered here, they integrate with the authorization model as described
by Biskup and Karabulut [18, 19, 125].

Fig. 3.1. A classification of properties (cf. Fig. 3.5)

3.2 Certification and Authorization

According to Biskup and Karabulut [18, 125], we can classify characterizing
properties as free and as bound properties. (see Fig. 3.1).
Free properties are enjoyed by entities independently of any services, e.g. personal
data, technical features, abilities, (group-)memberships, etc. A free property does
not directly express a service-specific authorization. The terms certification and
certificate in the model denote the process and the result, respectively, when

3.3 Property Statements 15

a responsible agent certifies a statement about free properties in its role as a
certifier. In Sect. 2.2 the student ID is a certificate, which expresses the certified
statement about the free property student.
Bound properties express an authorization relationship between an entity and a
specific service, e.g. the zoo admission ticket. Thus, bound properties are specific
to a certain service and they imply a specific authorization to use that service,
e.g. by means of an authorizing role. In the model the term authorization denotes
the process and the result, when a responsible agent certifies a statement about
bound properties in its role as an authorizer. In Sect. 2.2 the zoo admission
ticket is an authorization, which expresses the certified statement about the
bound property authorized for zoo entrance.

3.3 Property Statements

A responsible agent (cf. Sect. 2.3, here the university or the zoo ticket booth)
verifies that a subject entity enjoys certain properties and certifies a statement
under one of his own principals, such that the statement assigns a principal of
the subject to property attributes that correspond to the verified properties of
the subject. The association of the subject principal with the presenting entity is
verifiable by means of authentication data. A property statement also contains
verifiable data concerning the validity of the statement, where the data can only
be generated by the responsible agent and practically cannot be counterfeited.
Note, that certified property statements come in different forms, such as sta-
tic documents (e.g. certificates [18]) or as traces of interactive protocols (e.g.
anonymous credentials [34]).
A property statement comprises the following components (see Fig. 3.2 and
Fig. 3.3):

responsible agent: a principal of the entity, which is responsible for verifying
that the subject entity enjoys the properties under consideration and that
the subject principal belongs to the subject entity. This component indicates
the responsible agent to the recipient of the statement.1 If the recipient
trusts this agent (see ‘trust expression’ in Fig. 3.7), he can trust that the
agent correctly set the following associations up:
• the subject principal is correctly associated with an entity;
• the entity actually enjoys the properties that are expressed by the prop-

erty attributes.

1 The agent component may be omitted, if the responsible agent is known, e.g. if the
property statement is directly received from the responsible agent via an authenti-
cated channel (see ‘A4’ in Fig. 3.9 and ‘A3’ in Fig. 3.12, as well as ‘C1’ in Fig. 3.10,
‘B3’ in Fig. 3.11 and ‘C1’ in Fig. 3.12).

16 3 An Architectural Model for Secure Authorizations

Additionally, this component can be used as a reference to property state-
ments about the responsible agent. In more complex scenarios these property
statements need to be considered for licensing and delegation [18].

validity: public parameters for cryptography. This component allows to verify
the validity of the property statement and of its technical features, such as
guaranteed uniqueness, transferability, the ability to disclose hidden infor-
mation, etc. (see Sect. 7.4).2 The verification may be carried out on demand
using an online protocol, or it may be carried out offline, such as for refer-
enced property statements. The validity component must be generated using
private parameters of the responsible agent, such that the component can
only be generated by the responsible agent.

authentication: public parameters for cryptography. This component serves as
a proof that the property statement belongs to the presenting entity.3 The
proof is usually generated using an online protocol. The authentication com-
ponent must be generated using private parameters of the subject entity as
well as fresh challenge values chosen by the recipient, such that the compo-
nent can only be generated by the subject entity as an individual answer to
the individual challenge values.

attributes: expressing the set of properties enjoyed by the subject entity, about
which a statement is made.4 This component supports the decision process of
the recipient, based on his security policy (see ‘property attribute expression’
in Fig. 3.7).

subject: a principal of the subject entity (also denoted as subject principal). This
component supports the linkability of different transactions that correspond
to the same property statement (see ‘query context’ in Fig. 3.8), e.g. to
establish reputation that is associated with this principal.5

To be able to generate the authentication and validity components, private pa-
rameters of some parties must be used. We assume that the private parameters
2 The validity component may be omitted, if the property statement is received di-

rectly from the responsible agent via an authenticated and secure channel (see ‘A4’
in Fig. 3.9 and ‘A3’ in Fig. 3.12, as well as ‘C1’ in Fig. 3.10, ‘B3’ in Fig. 3.11 and
‘C1’ in Fig. 3.12).

3 The authentication component may be omitted, if the presenting entity has already
been authenticated by a responsible agent, which sends the property statement to-
gether with the service request via a secure channel to the service (see ‘C1’ in Fig. 3.10
and Fig. 3.12). In that case the service trusts the responsible agent for the correct
authentication of the presenting entity.

4 The attributes component may be omitted, if the responsible agent always certifies
the same a priori known set of properties.

5 The subject component is always included, if a property statement needs to be
referenced (see Sect. 3.4.2) (see ‘A4’ in Fig. 3.9 and ‘B3’ in Fig. 3.11). It may be
omitted if the property statement is not referenced and if the property statement
does not need to be linkable.

3.4 Architectures and Control Requirements 17

hidden (real) worldvisible virtual view

Fig. 3.2. Relationships between property statements and entities

responsible agent

validity

attributes

validity check

authentication

access decision

request processing

authenticity

property statement

subject

verification

trust evaluation

parameters

agent:
principal

properties
subject:

subject:
principal

subject: public
parameters

agent: private
parameters

subject: private
parameters

trusted agents

agent: public

policy

constraints
policy and

Fig. 3.3. Verification of property statements

have been securely distributed beforehand and are appropriately safeguarded.
Similar assumptions hold for the public parameters used for the verification of
the authentication and validity components.

3.4 Architectures and Control Requirements

From Sect. 3.3 follows that the components of certified property statements
primarily support security objectives of the service providers. Considering this
together with the implications from Sect. 2.3 we require that the user as subject
entity must not be able to control the certification, the authorization and the
service. Accordingly the fat light grey frames in Fig. 3.4 (and Fig. 3.9 to Fig. 3.12)

18 3 An Architectural Model for Secure Authorizations

user

m
an

ag
em

en
t

verification

certification

verification

authorization

verification

service

A2

B2

C2

B1

A3

A1

C1

B3

Fig. 3.4. Basic model

enclose the system components where the service-related security objectives are
enforced and which must not be controlled by the user. In Fig. 3.4 (and Fig. 3.9
to Fig. 3.12) the solid arrows indicate the flow of certified or verified property
statements, or of their corresponding references.6 In the text the arrows are
referenced by their identifiers (here: ‘A1’ to ‘C2’).
Section 3.4.1 explains how the verification of property statements works (see
‘verification’ in Fig. 3.4), whereas Sect. 3.4.2 describes how references to property
statements fit into the basic model. Section 3.4.3 examines the three phases of
service access, which correspond to the three fat grey frames in Fig. 3.4.

3.4.1 Verifying Property Statements

In the basic model depicted in Fig. 3.4 the recipient of a certified property
statement verifies the statement (see ‘verification’ in Fig. 3.4) starting with de-
termining the responsible agent (see ‘certification’ or ‘authorization’ in Fig. 3.4)
from the homonymous component of the statement. First, the recipient decides
whether he trusts the agent w.r.t. the verification of the properties expressed by
the attributes component and w.r.t. the correct association of the property at-
tributes to the principal of the entity which enjoys the corresponding properties
(see ‘trust evaluation’ in Fig. 3.3 and ‘trust base’ in Fig. 3.7). Subsequently, the
recipient determines by means of the validity component, whether the property
statement is valid (see ‘validity check’ in Fig. 3.3). Then, the recipient authen-
ticates the presenting entity using the authentication component, i.e., he checks
whether the presenting entity corresponds to the subject component (see ‘authen-
tication’ in Fig. 3.3). Eventually, the recipient interprets the property attributes
6 We assume that the service answer does not include statements about the properties

enjoyed by the user. Hence, the service answers are not shown in the model.

3.4 Architectures and Control Requirements 19

according to his policy (see ‘access decision’ in Fig. 3.3 and ‘property attribute
conversion’ in Fig. 3.7).

3.4.2 Referencing Property Statements

In the versions of the model depicted in Fig. 3.9 and in Fig. 3.11 the user obtains
merely a reference to a property statement (see ‘A3’ in Fig. 3.9 and ‘B4’ in
Fig. 3.11) that he forwards to the recipient (see ‘B1’ in Fig. 3.9 and ‘C1’ in
Fig. 3.11). A property statement reference comprises the following components:

subject: subject principal of the corresponding property statement.
supply: information, where the corresponding property statement can be ob-

tained.7

The recipient receives the referenced property statement from the responsible
agent (see ‘A4’ in Fig. 3.9 and ‘B3’ in Fig. 3.11).8

3.4.3 Phases and Property Attribute Conversion

The players depicted in Fig. 3.4 (and in Fig. 3.9 to Fig. 3.12) are the user-side
management, a certifier, an authorizer and a service.
The utilization of a service can be broken down into the following three phases:

1. The user has his relevant properties certified (see ‘A1’, ‘A2’ and ‘A3’ in
Fig. 3.4).

2. Presenting his relevant certificates the user is authorized for the utilization
of the service (see ‘B1’, ‘B2’ and ‘B3’ in Fig. 3.4).

3. Presenting the authorization the user can utilize the service (see ‘C1’ und
‘C2’ in Fig. 3.4).

This sequence of phases can be regarded as a multi-level conversion of property
attributes (see Fig. 3.6). Accordingly, property attributes can be classified in
analogy to Fig. 3.1, with the supplement that convertible attributes and finally
bound property attributes are distinguished (see Fig. 3.5).

7 The supply component may be omitted, if the supplier is known a priori.
8 If the recipient obtains the corresponding property statement via an authenticated

and secure channel, and if the recipient trusts in the security of the responsible agent
and supplier, the responsible agent component and the validity component may be
omitted from the property statement (see ‘A4’ in Fig. 3.9 and ‘A3’ in Fig. 3.12, as
well as ‘C1’ in Fig. 3.10, ‘B3’ in Fig. 3.11 and ‘C1’ in Fig. 3.12).

20 3 An Architectural Model for Secure Authorizations

Fig. 3.5. A classification of property attributes (cf. Fig. 3.1)

Fig. 3.6. Converting property attributes (see Fig. 3.5)

Management

The management is controlled by the user. It interacts with other players, and
based on the policy of the user, and aiming at satisfying the requirements of
the service or responsible agent (see the policies in Fig. 3.3 as well as ‘prop-
erty attribute expression’ and ‘trust expression’ in Fig. 3.7), it chooses property
statements and information that are/is suitable for the respective interaction.

Certifier

The certifier usually operates independently of the services. It associates free
properties to users by issuing certificates (see ‘free property attribute’ in Fig. 3.7).
The policy of the certifier expresses the conditions that must be met by the user
for certification (see ‘property attribute expression’ in Fig. 3.7). On the one
hand, the certifier may convince himself in the real world that the user enjoys

3.4 Architectures and Control Requirements 21

the required properties (see ‘free property’ in Fig. 3.6). On the other hand,
the certifier may accept a certificate that has been issued by another certifier
(see ‘free property attribute’ in Fig. 3.7) and may infer that the user enjoys
the property to be certified (see ‘property attribute conversion’ in Fig. 3.7). The
certifier issues a certificate (see the arrows labeled with ‘certification’ in Fig. 3.6),
which does not necessarily need to be represented digitally. Where appropriate,
the subject obtains merely a reference to the certificate (see Fig. 3.9).

Authorizer

On behalf of the service the authorizer associates the user with service-specific
authorizations (see ‘(finally) bound property attribute’ in Fig. 3.7). Accordingly,
a service is usually closer related to the authorizer than to any certifier. The
policy of the authorizer expresses the conditions that must be met by the user for
authorization (see ‘property attribute expression’ in Fig. 3.7). On the one hand,
the authorizer may accept certificates about free property attributes (see ‘free
property attribute’ in Fig. 3.7). On the other hand, the authorizer may interpret
and accept bound property attributes as free property attributes that are bound
to other services. The authorizer converts (see ‘property attribute conversion’ in
Fig. 3.7) the acceptable free property attributes into service-specifically bound
property attributes, e.g. into roles, which the service finally binds to privileges,
or into property attributes that are already finally bound to privileges, such as
capabilities. Subsequently, the authorizer grants an authorization to the user (see
the arrows labeled with ‘authorization’ in Fig. 3.6),9 which is always digitally
represented, because the service needs to verify it in the digital world. Where
appropriate, the subject obtains merely a reference to the authorization (see
Fig. 3.11).
In the case where all required certified property statements are digitally available
and the authorization can be decided digitally, the authorizer may forward the
authorization together with the user’s service request via a secure and authenti-
cated channel directly to the service (see ‘C1’ in Fig. 3.10 and Fig. 3.12).10 From
the user’s point of view the authorizer and service appear to be merged into one
entity.

9 An authorizer may interpret bound property attributes as free property attributes,
and it may convert them into (finally) bound property attributes. Before conversion,
in Fig. 3.6 the property attributes are interpreted from the point of view of the
converting entity. Hence, in Fig. 3.6 exists no authorization arrow starting from
bound property attributes, since these are interpreted as free property attributes
during the authorization.

10 If the service trusts the authorizer to correctly authenticate the user, then in addition
to the validity and responsible agent component also the authentication component
may be omitted from the authorization.

22 3 An Architectural Model for Secure Authorizations

vi
si

bl
e

vi
rt

ua
l v

ie
w

hi
dd

en
 (

re
al

)
w

or
ld

F
ig

.
3.

7.
R

el
at

io
ns

hi
ps

be
tw

ee
n

se
cu

rit
y

ob
je

ct
iv

es
an

d
pr

op
er

ty
at

tr
ib

ut
es

vi
si

bl
e

vi
rt

ua
l v

ie
w

hi
dd

en
 (

re
al

)
w

or
ld

F
ig

.
3.

8.
R

el
at

io
ns

hi
ps

be
tw

ee
n

th
e

su
bj

ec
t,

its
in

te
re

st
s

an
d

its
pr

iv
ile

ge
s

du
rin

g
ru

n
tim

e

3.5 Example Architectures 23

Service

The service may receive the authorization and the service request/query (see ‘at-
tribute component’ and ‘query’ in Fig. 3.8) simultaneously or at different times.
The security policy of the service expresses the conditions that must be met
by the user for service utilization (see ‘security policy’ in Fig. 3.8). The service
accepts (digital) authorizations and may check additional conditions that do not
refer to the authorizations as such, e.g. conditions w.r.t. the time stamp of the
reception of an authorization. The authorizations have the form of capabilities
and privileges, respectively (see ‘finally bound property attribute’ in Fig. 3.7),
which the service compares with the requested access privileges (see ‘privilege’
and ‘sub query’ in Fig. 3.8).
Alternatively, the service receives service-specifically bound property attributes
(see ‘characterizing property attribute’ in Fig. 3.8) and converts them according
to its policy into corresponding privileges (see ‘privilege’ and ‘property attribute
conversion’ in Fig. 3.8).

3.5 Example Architectures

In the following, we indicate how the model maps to existing systems by giving
some well-known examples.
The basic model as given in Fig. 3.4 can be used to model the authorization
architecture of Kerberos (as described by Gollmann [107], Sect. 10.2.1): The
management corresponds to the client, the certifier corresponds to the authenti-
cation server, the authorizer corresponds to the ticket granting server, and finally
the service corresponds to the server.
The upper part of Fig. 3.9 can be used to model the deferred acquiring of a
certificate, such as it occurs when an email user agent asks a PKI directory
for the signature verification key certificate required for verifying the digital
signature in an email (see ‘A4’ in Fig. 3.9). Note, that the certification part in
Fig. 3.9 may also be combined with the model versions in Fig. 3.10 and Fig. 3.11.
As depicted in Fig. 3.10 the authorizer and the service may be merged. The user
sends his service request together with the required certificates to the autho-
rizer/service (see ‘B1’ in Fig. 3.10). This version models the data sources of an
information mediator [18].
The model version depicted in Fig. 3.11 can be used to model the password-based
authorization that is traditionally wide-spread in practice. Based on the certifi-
cate about his organizational affiliation (see ‘B1’ in Fig. 3.11) the user obtains
from the IT system administrator (authorizer) the reference to his authorization
in the form of an account name (subject principal, see ‘B4’ in Fig. 3.11). The au-
thorization comprises the components ‘subject’, ‘authentication’ and ‘attributes’

24 3 An Architectural Model for Secure Authorizations

user

m
an

ag
em

en
t

verification

certification

verification

authorization

verification

service

A2

B2

C2

A4

B1

A3

A1

B3

C1

Fig. 3.9. The authorizer obtains a refer-
enced certificate

user

m
an

ag
em

en
t

verification

certification

verification

authorization

service

A2

B2

B1

A3

A1

C1

Fig. 3.10. The authorizer forwards the
service request together with the autho-
rization to the service

user

m
an

ag
em

en
t

verification

certification

verification

authorization

verification

service

A2

B2

C2

B3

B1

A3

A1

B4

C1

Fig. 3.11. The authorizer sends an autho-
rization to the service

user

m
an

ag
em

en
t

verification

certification

verification

authorization

service

A2

A1

A3

B1

C1

Fig. 3.12. The certifier forwards the ser-
vice request together with the certificate
to the authorizer

and is directly brought into the IT system (service) by the administrator (see
‘B3’ in Fig. 3.11). The private parameter for authentication is the password that
the administrator initially entrusts the user with.
In the model version depicted in Fig. 3.12 the certifier could model an IPSEC
node that receives IP packets (service requests) from the user and that provides
them with an authentication header (certificate). The authentication header com-
prises the components ‘responsible agent’, ‘validity’ and ‘subject’. By doing so,
the IPSEC node certifies that the request (or better: packet) originates from
within the address range for which it is authoritative. If the destination node
receives the IP packet, its IPSEC stack verifies the authentication header (au-

3.5 Example Architectures 25

thorizer) and may or may not allow the IP packet to be handed upwards in the
TCP/IP stack towards the addressed process (service).

4

Traditional Security Objectives

In Chap. 3 a model for secure authorizations was introduced. The notion of secu-
rity captured by this model supports requirements of users and service providers.
IT systems and the services they are hosting need to meet certain expectations
regarding dependability, safety and security. In the following, we consider tra-
ditional security objectives, such as confidentiality, accountability, availability,
etc. The high-level definitions of security objectives are commonly known, for
example from textbooks by Gollmann [107], Sect. 1.1 or Eckert [72], Sect. 1.2.
While the notions captured by the various definitions may vary in detail, here
we are rather concerned with the expectations of people w.r.t. IT services on a
higher lever.
Section 4.1 roughly describes the high-level expectations of service users and how
they motivate security objectives of the service providers. The intrinsic security
objectives of service providers are described in Sect. 4.2, and how they may go
further than users would like them to. For this text, the focus of security is
narrowed down to audit data for misuse detection in Sect. 4.3. Section 4.3.1
describes the common use of audit data in practice.
The privacy aspects of security, particularly w.r.t. audit data, and the conflict
between traditional security objectives of service providers are examined in detail
in Chap. 5.

4.1 Expectations of Users

The users of an IT service expect that the service is provided in a dependable
and secure way, such that the service is always available and delivers the results
according to the functionality as announced by the service provider. The users
expect that the service works properly, regardless of possible threats, such as
malfunctions of parts of the system, deliberate attacks or human error. This
high-level expectation of users translates to the task of the service providers, to

28 4 Traditional Security Objectives

take appropriate measures, such that their service is eligible to be used by people.
The service providers will not only follow these high-level objectives to please
their users, naturally the providers also are inherently interested in protecting
their systems and investments.
On the one hand, service providers are interested in the same security objective
as their users. On the other hand, the security objectives of the service providers
may go further than that and might conflict with further security requirements of
the users, in particular with their expectations regarding privacy and protection
of their personal data.

4.2 Requirements of Providers

As stated in Sect. 4.1, the provider of a service is interested in certain security
objectives to protect his investments and business. The providers use preventive
safeguards to reduce vulnerabilities and to avoid threats. Exemplary safeguards
are firewalls and virtual private networks, i.e. access control and cryptography,
respectively.
The preventive nature of many safeguards is illustrated in the following, using
the example of access control based on property statements (see Sect. 3.3). In
many situations trust relationships are established in the real world, but repre-
sented and evaluated in the digital world (see ‘responsible agent’ component in
Sect. 3.3). Before a property statement is accepted, its validity is verified (see
‘validity’ component in Sect. 3.3), and it is verified, whether it is the subject of
the statement, who presents the statement (see ‘authentication’ component in
Sect. 3.3). When a property statement has been verified, the properties repre-
sented by the statement are matched against the access policy (see ‘attributes’
component in Sect. 3.3).
As far as these preventive safeguards are concerned, they protect the security
interests of both, the service providers and the users. However, as in the real
world, preventive safeguards in the digital world do not shield IT systems from
all digital threats. It is therefore useful to be able to detect system compromises
and to collect sufficient data about the situation to be able to react appropriately.
It could be argued that collecting data to improve the system protection is also
in the interest of the users. Considering the linkability of property statements
as an example (see ‘subject’ component in Sect. 3.3), the linkability could be
used to analyze service accesses w.r.t. misuse, or it could be used to establish a
reputation system. The users surely appreciate the additional security and the
information about the reliability of potential business partners.
Nowadays, property statements are usually tied to some person-identifying fea-
ture, such as the name of the subject of the statement. Thus, information col-
lected about service activity and user activity clearly is personal data. If personal

4.3 Surveillance Using Audit Data 29

data of users is collected, the individual rights of the users and the potential of
misuse of personal data must be weighted against the criticality of the service
and the effects of its failure. While for some very critical services the users would
accept that their personal data is collected, for other services this would not be
the case. Also, the users might not know, what data is collected about them and
how it is used (possibly against them).
In a time when customer relationship management (CRM) also includes the
notion of collecting, analyzing and exploiting consumer profiles, it is not far-
fetched, if users suspect that their personal data might not only be used to pursue
the user’s security objectives, but also to realize far more extensive objectives
of the service provider, which are in conflict with the user’s desire for privacy.
These issues are discussed in Chap. 5.
Data about user activity can be collected at various layers of an IT system. Most
operating systems already provide for such data collection at the system level
in the form of audit data. Intrusion detection systems instrument the system
with probes to collect further audit data. The focus of this book is on audit
data for misuse detection. In Sect. 4.3 and Sect. 4.3.1 audit data and its uses are
introduced.

4.3 Surveillance Using Audit Data

To detect misuse or malfunctions of a service, one needs to collect and analyze
information describing the relevant and current behavior of the service. Such data
is often called monitoring data, log data or audit data. In the following we use the
term audit data also synonymously for monitoring data and log data. Audit data
is the data that a service (possibly instrumented with a probe) collects about
activity, which is observable in the system, and which is relevant for the purpose
of audit data analysis. See Sect. 12.1.1 for a more technically inclined definition
of audit data as an ordered set of audit records describing events. Example syslog
audit data is given in Sect. 18.1, and Sect. 19.1 shows how abstract events, as
defined in Sect. 12.1.1, map to syslog audit data.
Most modern operating systems offer comparable audit components, e.g. AIX,
BSDs, HP-UX, Linux, Solaris, Windows-NT and its descendants. All of these
record the identity of the originator of an event or at least identifying features
of users [75, 178]. Audit components specifically designed for compliance with
the Trusted Computer System Evaluation Criteria (TCSEC) (C2 or higher) [37,
38] or the Common Criteria (FAU_GEN1.2 and FAU_GEN2) [53] are required to
record information identifying the originator of an event. Hence, all of these
audit components record personal data. The implications for user privacy are
discussed in Sect. 5.7 and Sect. 5.4.3 considering German privacy law.
Many IDSs leverage audit data provided by the operating system. To complement
their view of the current situation, IDSs instrument the service system with

30 4 Traditional Security Objectives

probes and collect additional audit data, e.g. from the TCP/IP stack or from
the network interfaces. IDSs analyze the audit data in an automated fashion
and control what audit data is retained and what is discarded. In addition, most
service providers collect and archive extensive amounts of audit data also for
manual inspection, e.g. for after-the-fact forensics, or just “to be on the safe
side” in the case of litigation. Section 4.3.1 describes the most common security-
related objectives that service providers follow, when collecting audit data.

4.3.1 Audit Data Related Security Objectives of Providers in
Practice

A study of the US National Science Foundation (NSF) [183, 184] yields that
audit data is collected and analyzed in practice to provide secure (44%), efficient
and stable services. In nearly all surveyed organizations audit data was collected
for these reasons (96%). The majority of the service providers would like to col-
lect even more (detailed) audit data (59%). From the perspective of the service
providers this does not happen due to lack of time (57.7%), insufficient technical
resources (50%) and other factors (38.5%), but only a small proportion of ser-
vice providers accounts this to organizational data processing policies (11.5%),
personal ethical principles (9.6%), or pertinent law (7.7%). Most providers tailor
audit data collection to their local needs w.r.t. searching and analysis (82%).
Facing suspected misuse, nearly half of the service providers have already moni-
tored their users without informing them and without a priori having requested
the users’ permission to do so (42%). Nearly all service providers archive audit
data for later forensics or to be able to provide a stable system (82%). Roughly
a quarter of all service providers keeps archived audit data for longer than two
months (22%).

5

Personal Data Protection Objectives

In the preceding Chapters the exposition was focused on the security objectives
of the service providers. As motivated in Chap. 4, such safeguards are also in
the interest of the service users. In particular, the users can benefit from the
reliability of secure services. In the following, the perspective is extended to
also comprise the user requirements for personal data protection, particularly
pseudonymity, serving the right to informational self-determination.
Section 5.1 motivates the need for privacy or personal data protection in the dig-
ital world. Section 5.2 distinguishes the protection of privacy or personal data
from rather traditional security objectives. Protection of privacy or personal data
is expected by the users (see Sect. 5.3) and required by pertinent law. Section 5.4
scratches the surface of the legal aspects and concepts for the protection of pri-
vacy or personal data. Section 5.5 motivates, why laws and user expectations
alone are not sufficient for privacy protection. Section 5.6 surveys the principles
for technical enforcement of the protection of privacy or personal data. Sec-
tion 5.7 argues that safeguards are a double-edged sword and investigates this
aspect for audit data. In Chap. 6 a notion of multilateral security is developed
w.r.t. audit data, integrating traditional security objectives and privacy objec-
tives.

5.1 Why Personal Data Protection?

In the digital world the importance of privacy related security objectives is grow-
ing. First, on-demand services in contrast to broadcast services need to under-
stand the information needs of their users; so the users disclose them to the
on-demand service. Second, compared to business transactions in the real world,
in the digital world more parties are involved in the transactions, which can
draw inferences from the personal data of the users. Third, in the digital world
the threat of unnoticed passive eavesdropping (of personal data) is increased

32 5 Personal Data Protection Objectives

compared to the real world. Finally, digitally captured personal data can be ef-
ficiently and arbitrarily stored, processed and correlated with data from other
parties.
Today, users already leave a multitude of traces when accessing services in the
digital world [207]. Some parties such as Internet service providers or web email
service providers already have access to the personal data of very large user
populations. Large scale surveillance of activity in the digital world could be
installed much more cost-efficiently than surveillance of activity that remains in
the real world, but outside the digital world. In fact, currently there is a trend
in many EU member states to oblige telecommunication providers to collect and
retain telecommunication data, such that it can be efficiently retrieved by law
enforcement agencies [69, 198].

5.2 Distinction from Traditional Security Objectives

There is a noteworthy difference between traditional security requirements (e.g.
integrity) and privacy requirements for personal data protection. This difference
can be illustrated using an exemplary message being sent from a sender to a re-
cipient. Many traditional security objectives consider attackers as a third party,
which has no established relationship with the sender or the recipient/processor
of the message. This attacker model assumes in particular that the attacker is un-
known to the victims. In contrast, personal data usually is (possibly necessarily)
disclosed within the scope of accessing some service. In that case, the attacker
model includes the recipient of the personal data, which usually is known to the
sender.
The preventive effect of the pertinent legislation can be assumed to be low w.r.t.
unknown attackers or attackers, with no interest in sustaining a relationship with
the victim. Consequently, technical safeguards that are controlled by the poten-
tial victims are considered a high priority. As for traditional security objectives,
such safeguards are also useful for the protection of personal data. However,
some services inherently require the disclosure of personal data, such that the
data is available to a potential attacker, i.e. the service as the recipient. Yet, in
this case the service is keen not to impair his relationship with the sender, e.g.
by his own misconduct. Moreover, the recipient or attacker is known, whereby
the legal momentum gains additional significance.
Summarizing, the legitimate recipient of personal data is motivated to protect
the personal data in the interest of sustaining a good relationship with the data
subject and to avoid sanctions. As a result, to be able to comply with the user ex-
pectations, the recipient needs to provide technical safeguards, even though from
the view of the sender such safeguards are less preferable than sender-controlled
safeguards. When comparing sender- and recipient-controlled safeguards, we find

5.4 Requirements of Pertinent Legislation 33

that the latter exhibit specific advantages, such as cost-efficient deployment (see
Sect. 9.1).
Thus, alongside with the customer relationship management the privacy law
poses a considerable motivation for the service providers to deal with technical
measures for the protection of personal data. In the following, both sides will be
examined. Specifically for the statutory aspects this book takes a technological
point of view and cannot provide legal advice.

5.3 Expectations of Users

In the real world we find several socially accepted anonymous services, such as
anonymous hotlines for counseling and advice, anonymous elections, anonymous
telephone calls using cash or pre-paid cards in phone booths, and last but not
least, anonymous purchase of merchandise by using cash. People expect to be
able to carry out these transactions anonymously also in the digital world. Several
studies demonstrate that Internet users and customers value their privacy also
in the digital world [163, 179, 1, 116, 189, 39].
Consequently, the lack of anonymous access alternatives can keep users from
accessing a service. The majority of customers would not use recent technologies,
if they had to risk that their personal data would be collected and processed for
other purposes than agreed upon beforehand [65]. Another study concludes that
more users would conduct commercial transaction in the digital world, if the
services could be accessed under pseudonyms [114].
The users predominantly look favorably upon the concept of anonymity on the
Internet and associate it with the protection of personality and freedom [31]. This
is also reflected by the strong concern about third party surveillance and profiling
[179, 31]. Nevertheless, merely 4% to 5% of the respondents use an anonymization
service, which can presumably be attributed to a lack of information [31, 179].
The percentage of users that would use an anonymization service increased to
76%, after the users looked into the subject in the course of the survey [31]. A
further survey shows that the usage of anonymization services already faded to
the daily routine of sophisticated users with the intent of avoiding profiling by
providers of the services that they access via the anonymization service [208].

5.4 Requirements of Pertinent Legislation

In the following, the relevant terms, concepts and principles for the design of tech-
nical safeguards for the protection of personal data are introduced, specifically
with a focus on pseudonymous authorizations and audit data. Section 5.4.1 intro-
duces the terms of privacy and informational self-determination. The fundamen-
tal concepts generally in use for protecting privacy are described in Sect. 5.4.2.

34 5 Personal Data Protection Objectives

Section 5.4.3 examines audit data related issues in German privacy law, whereas
Sect. 5.4.4 briefly comments on the broader perspective of harmonizing the pri-
vacy law of member states of the European Union.

5.4.1 The Right to Informational Self-determination

The first know vague definition of privacy was given by Warren and Brandeis:
“the right to be alone” [220]. The most common definition of privacy in cur-
rent use is the one by Westin and it already suggests a notion of informational
self-determination: “Privacy is the claim of individuals [. . .] to determine for
themselves, when, how and to what extent information about them is communi-
cated to others” [222]. In this text the informational aspect of privacy is focused,
particularly as it is postulated in the so-called Census Decision (CD, Volkszäh-
lungsurteil in German) of the German Federal Constitutional Court (Bundesver-
fassungsgericht in German) as a right to informational self-determination [66].
In this book we often refer to German law related to privacy because it strongly
influenced the European directive 95/46/EC [76]. The objective of this direc-
tive is the harmonization of the law of EU member states concerning privacy
(see Sect. 5.4.4). Fischer-Hübner provides a broader and at the same time more
detailed survey on privacy laws [80].
The right to informational self-determination is derived (see C II 1a in CD
[66]) from the basic rights of human dignity (Art. 1 (1) German Constitution,
Grundgesetz/GG in German [28]) and the right to free development of person-
ality (Art. 2 (1) GG [28]), so that it forms one of the highest legal values. It
permits the individual to determine on principle himself on the disclosure and
use of his personal information.

5.4.2 Fundamental Concepts of Personal Data Protection

The constitutional right to informational self-determination cannot be considered
to be unlimited or absolute, since it can be in conflict with other rights or legal
values (see Chap. 6). Also, it seems hardly possible to participate in society
without revealing any personal information.
As a result, exemptions from this right are assigned for legal purposes that are
in a predominant public interest. Being restrictions of the right to informational
self-determination (s. C II 2 in CD [66]), exemptions have to be permitted by
a constitutional law, which, according to the principle of the rule of law, must
follow the principle of clarity of the law and the principle of proportionateness
(s. C II 1b in CD [66]). That is, according to the principle of clarity of the
law, any restricting law has to make clear under which conditions and to what
extent restrictions on the constitutional right are permitted. According to the
principle of proportionateness, a measure affecting a constitutional right must be

5.4 Requirements of Pertinent Legislation 35

F
ig

.
5.

1.
C

on
ce

pt
s

of
th

e
C

en
su

s
D

ec
is

io
n

of
th

e
G

er
m

an
Fe

de
ra

lC
on

st
itu

tio
na

lC
ou

rt
[6

6]

36 5 Personal Data Protection Objectives

necessary, suitable and proportionate, i.e., in proper relations w.r.t. the purpose
that is pursued by means of the measure.
The proportionateness of a measure w.r.t. to a purpose can be judged by consid-
ering the sensitivity of the concerned personal information. The German Con-
stitutional Court proclaimed that there is no a priori non-sensitive personal
information (s. C II 2 in CD [66]). Rather, the sensitivity of personal informa-
tion results from the kind of the measure, from the pursued purpose, as well as
from the kind and scope of the collected data, from its processibility (i.e. linkabil-
ity), and finally from the results of the processing and the respective recipients.
To judge the proportionateness of a measure, the data sensitivity is determined
and fixed. Operationally, the influencing factors, in particular the pursued pur-
pose, are made public and committed to. Accordingly, this concept is denoted
as purpose binding.
In the German census decision further concepts for the protection of personal
data are introduced: the transparency, the informational separation of power,
and the requirement for implementation of the protection. The transparency re-
sults from comprehensive assurances to the data subject, to be informed about
aforementioned measures and to be able to access the own personal data in
that process. The informational separation of power is installed to prevent the
correlation of personal data that is legally and necessarily stored by different
parties. Finally, the German Constitutional Court requires the enforcement of
the informational self-determination by means of suitable technical and organi-
zational safeguards. Figure 5.1 roughly illustrates the main relationships between
the introduced concepts.

5.4.3 The Situation in Germany

The pertinent German privacy law postulates a default prohibition for the col-
lection, storage and processing of personal data. In the presence of an applicable
exemption by law or of the data subject’s informed consent, the data controller
has to comply with comprehensive obligations in favor of the data subject, e.g.
compatible use (purpose binding), information and notification, as well as erasure
[191, 198].
What renders the translation of the German privacy law more difficult into
action, is the fact that the kind of a service determines the set of applicable acts
and ordinances, which in detail entail different requirements and sanctions. For
example, an email service is classified as a tele-service, while a content service
on the web (web server) is a tele-service as well as a media-service [119, 26].
The privacy acts categorize personal data either as stock data, as usage data or as
billing data. In contrast to the other data categories the storage and processing of
stock data is not subject to temporal restrictions [119]. For example, the property
statements introduced in Chap. 3 belong to this data category.

5.4 Requirements of Pertinent Legislation 37

An example for usage data is the individual service request of a service user. The
collection, processing and storage of usage data is restricted to the (personal)
data that is necessary for service provision and it is allowed only during the
duration of the service usage. Usage data usually relates to persons, e.g. if it
contains the IP address of the user’s machine or the name of the user’s access
account [198, 140, 106, 183, 184, 119, 134, 26, 205].
As a result, the common practice of service providers collecting usage data in the
form of audit data is a problem [198, 106]. The collected audit data frequently
documents the service access characteristics and thus, also the service-related
behavior of the users. Audit data usually is collected and stored for future use,
aiming at misuse detection in order to assert the rights of the service provider
and to hold attackers accountable [184] (cf. guard and intrusion detection in
Sect. 2.2 and Sect. 2.4). Audit data can be collected at various points in the
model from Chap. 3. In this text only the audit data collected by the service is
considered.
Data, which the service provider immediately depends on for billing his services,
is denoted as billing data. The billing data is the subset of the usage data that is
relevant for billing the accessed service. The billing model determines, which data
can be legally collected, stored and processed [106]. Usually it is not necessary
for the billing to collect complete user access traces. For example, if the billing
model is a flat rate, in principle no usage data should be required for billing
[198]. Thus, billing data alone in general is not useful for misuse or intrusion
detection. Moreover, billing data that is related to persons is subject to erasure
after a short time limit [119].
Organizations frequently offer their employees services for working and business
purposes. If the private utilization of these services is tolerated by the organi-
zation, collecting audit data may infringe the employees’ right to informational
self-determination. Additionally, according to German labor legislation the works
or staff council has the right to co-determination, if a system is about to be in-
troduced that can be used or abused for monitoring the employee performance
[26, 204]. If the services accessed by the employees collect and store audit data
or usage data, various alternatives for analysis are enabled, also w.r.t. employee
performance [198].
As a result from the complex statutory situation and from the restrictions im-
posed by privacy laws concerning the collection, storage and processing of per-
sonal data, the law-abiding introduction of audit data driven safeguards, such as
IDSs, remains an intricate endeavor [120].

5.4.4 European Harmonization

The main objective of directive 95/46/EC [76] of the European Union (EU)
is the protection of privacy as a fundamental right. The directive aims for a
uniformly high minimum standard of privacy protection to avoid restrictions on

38 5 Personal Data Protection Objectives

the free flow of personal data between EU member states, which is one essential
enabler for further European economic development (see considerations 3, 5, 7–9
in directive 95/46/EC [76]).
The rationale of the data protection provisions required by the directive is ori-
ented along a combination of the principles as introduced in Sect. 5.4.2, which
are found in the privacy law of various EU member states. However, the directive
was mainly influenced by the German system [80].
By means of the directive, a harmonization of the national privacy law of the
majority of the EU member states has been achieved. Article 25 of the directive
imposes restrictions on the transborder data flow, resulting in economical pres-
sure on third countries that is useful to motivate them to establish an adequate
privacy protection level. Anyhow, due to cultural, political and historical diver-
sity a complete international harmonization cannot be expected. The approach
of the USA may serve as an example. Instead of a comprehensive privacy law the
USA prefer a self-regulation approach with some private sector specific law. Due
to the lack of facilities for control and enforcement the self-regulation approach
remains inadequate [80].

5.5 Necessity of Technical Enforcement

Digitally available information can be stored, aggregated or correlated with other
information in a cost-efficient way. Normally, the data subject does not notice if
his personal data is copied and passed on. After a misuse it is hard or impossible
for the data subject to produce proof of the misuse. Even if the misuse can
be proven, the data subject may suffer an irreversible damage because data,
once publicized, e.g. on the Internet, practically cannot be retracted. Also in the
course of transborder flow, personal data may leave the jurisdiction of a country
with a high level of protection of data protection.1

Also, even if the data subject trusts the service provider and the owner of the
hosting IT system, disguised system components, i.e. trojan horses, cannot be
ruled out, which may copy and forward personal data to unauthorized third
parties. Moreover, most IT systems may have so far unknown vulnerabilities,
enabling unauthorized third parties to access the personal data on the vulnerable
system.
The aforementioned problems demonstrate that laws alone are insufficient to pro-
tect personal data effectively. This motivates the need for technical safeguards
that preferably are controlled by the respective data subjects. Nevertheless, tech-
nical safeguards must be embedded in a legal framework. Also, the data controller
still has the obligation to adhere to national privacy law. Even though safeguards
that are controlled by the data subjects are most preferable, the data controller’s
1 As remarked in Sect. 5.4.4, a global harmonization of privacy law cannot be expected.

5.6 Principles of Technical Implementation 39

obligation remains and cannot be shifted to the data subjects by referring them
to user-controlled safeguards.

5.6 Principles of Technical Implementation

Aiming at the protection of the informational self-determination of the individ-
ual, national data protection acts (e.g. the German Federal Data Protection Act
[29]), international privacy directives (e.g. the EU Directive on Data Protection
[76]), the Guidelines of UN and OECD, as well as voluntary privacy codes and
standards devise various principles for the handling of personal data. In the fol-
lowing, the common principles are introduced, as far as they are relevant for the
technical implementation of informational self-termination.
Personal data should be collected and processed in a fair and lawful way. The
principle of fairness comprises the principle of transparency, accuracy and default
prohibition. Transparency can be achieved by comprehensive information and
notification of the data subject, e.g. regarding automated decision processes, the
data controller, the scope, the purpose, the right to data access and correction.
Transparency also helps to achieve data accuracy. The data subjects have a
right to access their personal data and to correct, erase or block incorrect or
unrightful data. These options should ideally already be implemented in the
systems that are under the control of the data subject (e.g. in the user-controlled
management component in the model from Chap. 3), if they store personal data,
which later can be passed on by the system. The system could assist the data
subject by automating the clearance for personal data to be passed on, based on
the situation, e.g. the data recipient’s privacy policy, and on the user-controlled
privacy policy.
The principle of default prohibition of collection of personal data requires that an
exemption by law permits or the data subject himself gives his informed consent
to collect the personal data. The management of digitally declared and informed
consent should be implemented by the data controller in a legally effective way.
Note, that informed consent implies the requirement for transparency.
The technical realization of the introduced fairness aspects are not further con-
sidered in this text. Rather, the text in the following focuses on aspects of
data quality, which subsume the concepts of necessity and purpose binding (see
Sect. 5.4.2). The concept of necessity implies that, if possible, a service must be
accessible anonymously, i.e. personal data must be processed by the service in
anonymous form, and anonymous payment must be accepted. The service users
must be informed about the available anonymous access and payment options.
Ideally, these options are by default pre-selected for the user.
The concept of necessity comprises the principles of data avoidance and data
reduction. The latter can be implemented by means of data aggregation, coars-

40 5 Personal Data Protection Objectives

ening, anonymization, pseudonymization or erasure after fulfillment of the pur-
pose or after mandatory time limits. Personal data can be avoided if it is not
collected or if it is collected only in the necessary minimal amount, and/or in
anonymous or pseudonymous form. Purpose binding can be achieved by fixing the
legally permitted or consented purpose and the processing possibilities. The re-
spective results are bound to that purpose. Likewise, in certain environments the
collection of personal data can be technically controlled (cf. the user-controlled
management component in the model from Chap. 3).

5.7 Duality of Safeguards

While safeguards can be used to protect personal data, they can also be at odds
with the very same objective. Personal data that is collected by safeguards for
security reasons may also be used for purposes that are incompatible with the
purpose originally followed with that safeguard. Considering some examples, in
the following this conflict is illustrated and in Sect. 5.7.1 and Sect. 5.7.2 it is
elaborated for the collection of audit data.
Property statements that identify the user in the subject component (see
Sect. 3.3), reveal a part of the user’s activity and possibly his physical loca-
tion, when being used for service access. Within an organization this data can
be consolidated for example in an employee location profile, which could be used
to monitor employee performance.
A property statement identifying the user additionally describes his properties
and (possibly) authorizations in the attributes component. These attributes com-
monly can be observed by many users, who do not need to know this information.
One standard safeguard for data availability are regular data backups. The per-
sonal data on the less recently used backup media may not be up to date, i.e.
incorrect. Although the data subjects have the right to rectify incorrect personal
data, they predominantly in practice do not have that option w.r.t. data backups.
Audit data such as used for intrusion detection on the one hand supports the
integrity protection objective of the service provider. On the other hand, the
audit data usually contains personal data and therefore collecting that data
affects the informational self-determination of the users who do not violate any
security objectives of the service provider. Although almost all users play by
the service provider’s rules, they are affected by this restriction. Audit data
containing personal data could be used to monitor employee performance, to
analyze the employee activities, or possibly even to profile employee personalities
[204]. It is known that employee awareness of such provisions increases the work
stress and adversely affects employee productivity and satisfaction [118].

5.7 Duality of Safeguards 41

5.7.1 Personal Data Protection Problems with Audit Data

A study of the US National Science Foundation (NSF) on audit data [183, 184]
yields that system administrators (as employees of a service provider) have an
overly technology-centered view on authorizations in the systems they manage.
They fall for the common misconception that they are (officially, legally, morally,
etc.) authorized to perform all those activities in a system, for which they are
technically authorized by the access control mechanisms.
Unfortunately, the technically enforced authorizations that are required to pro-
vide for sustained and secure operation of an IT system, mostly exceed the
authorizations that are preferable from the view of privacy and personal data
protection. Hence, privacy objectives for the most part are not technically en-
forced and remain in the realm of guidelines, laws and user expectations. The
gap between not technically enforced privacy objectives and technically enforced
reliability or security objectives gains momentum due to the following factors:

• The technically enforced authorizations usually allow the system administra-
tors in a mean of 1.6 steps to identify the person from given audit data.

• System administration is sometimes carried out by green men, such as stu-
dents.

• System administration employees may change roles and responsibilities, but
the technically enforced authorizations commonly are not updated or revoked.

• Often, new employees are not briefed about privacy-related authorization
restrictions that are not technically enforced. Mostly, there are no guidelines
documenting such restrictions.

5.7.2 Principles of Technical Implementation Violated by Audit Data
in Practice

The survey of the NSF [183, 184] identifies all direct sub-aspects of the three
main privacy principles fairness, data quality and safeguards for technically im-
plementable data protection as being endangered by the existence of audit data.

Fairness: First, the principle of fairness calls for transparency, which as the sur-
vey shows, prevalently is not established. Second, without transparency it
is hardly possible to achieve accuracy of the collected personal data. And
third, system administrators frequently do not consider the default prohi-
bition concerning personal data collection, because they do not realize that
audit data contains personal data.

42 5 Personal Data Protection Objectives

Data quality: Due to the lack of guidelines for the processing of personal data,
purpose binding is not adhered to. Shortage of manpower and time resources2
usually discourage the immediate analysis of audit data that has been col-
lected and stored. This practice runs contrary to the principle of necessity,
in particular to the principle of data reduction.

Safeguards: The safeguards of widely spread commercial off-the-shelf (COTS)
operating systems are ineffective, because the systems are configured for daily
operation such that the system administrator’s authorizations always enable
him to undermine the confidentiality, integrity and availability of (personal)
data collected, stored and processed by the system. Guidelines clarifying the
official limits to the broad technically granted and enforced authorizations
of the administrators, are commonly missing.

The concerns regarding audit data driven safeguards are summarized in the sur-
vey as follows. “The security concerns regarding computer systems and networks
[. . .] constitute fertile ground for the development of increased surveillance tech-
nologies. Another driving force is the desire to extend the technologies to their
outer limits.” [184]

2 Shortage of manpower and time are a common justification to neglect security and
privacy issues. As with everything, whether this justification holds, is a matter of
the priorities defined at the executive level of the organization.

6

The Challenge:
Technical Enforcement of Multilateral Security

As motivated in Chap. 4 and Chap. 5, there is an inherent conflict between the
individual user who is interested in personal data protection or anonymity, and
the potential misuse victims, e.g. the service providers, who are interested in
accountability, which could be required to claim compensation. Obviously, the
simplest solution is to give up one of the requirements in favor of the other
requirement.
If only the security objectives of the service provider are accounted for, this
also holds for the certification and authorization (see Fig. 3.4 and Fig. 3.9 to
Fig. 3.12). Eventually, all components of certified property statements support
primarily the security objectives of the service provider. Such a scenario does
not inspire the user’s confidence in the protection of his anonymity by the cer-
tifier, authorizer or service, particularly if the subject component in property
statements identifies the individual user. Depending on the nature of a given
service, the user will more or less reluctantly employ such property statements
(see Sect. 5.3).
If only the anonymity interest of the users is enforced, this also holds for the
certification and authorization. In such a scenario the service providers cannot
have confidence in the complete protection of their security objectives. Given the
nature of the service, the provider will or will not be willing to accept this risk.
Obviously, following such a simple approach we can easily create scenarios where
users and services will not interact. As the discussion of Fiedler and Rossnagel
[77, 190, 78] demonstrates, a solution that satisfies the involved parties cannot
be achieved by completely giving up the objectives of one party in favor of the
interests of the other parties.
Rather, a fair balance of the interests of all participants in consideration of the
respective application or scenario seems desirable. We denote technologies that
balance conflicting security objectives in a given application or that at least es-
tablish transparency regarding the enforceable security objectives as technologies
for multilateral security [180, 173].

44 6 Technical Enforcement of Multilateral Security

For the case of multilaterally secure audit data analysis for misuse detection we
advocate an approach based on pseudonyms. In the following, legal arguments
from the literature are exploited for and translated to the technical concept of
pseudonyms (see Sect. 6.1 and Sect. 6.1.1). Most importantly, it is clarified under
what circumstances and subject to what assumptions pseudonyms can be legally
disclosed (see Sect. 6.1.2 and Sect. 6.1.3). Based on these results a primarily
technically inclined framework for pseudonyms is introduced in Chap. 7.

6.1 A Law-driven Approach Using Pseudonyms

A pseudonym-based approach to multilateral security was motivated and sub-
stantiated with legal arguments by Roßnagel and Scholz [191] and Jaeger [119].
The results that are relevant in the context of the German privacy law are sum-
marized and interpreted by these authors. In the following Sections, the technical
dimensions of this approach are examined.
When designing and selecting technologies for media- and tele-services, §3 Sect.
4 TDDSG [27] and §12 Sect. 5 MDStV [68] require to aim for collecting and
processing only personal data that is really necessary. This requirement is sub-
stantiated in §4 Sect. 1 TDDSG [27] and §13 Sect. 1 MDStV [68] by the obligation
of the service provider to facilitate the anonymous or pseudonymous access to and
payment of the service, as far as technically possible and reasonable. Anonymity
and Pseudonymity serve as means to implement system- and self-protection by
realizing data avoidance or data reduction for informational self-determination
[191].
In this context the term personal identifiability is meant to be relative, since the
personal identifiability of given data depends on the actual external knowledge
and on the actual time. Accordingly, the obligations of privacy law apply only
to those data controllers, which can establish the relationship between the data
and the data subject by means of the external knowledge available to them.
Thus, the conflict between the objectives accountability and anonymity can be
solved in a fair way by applying pseudonyms, such that the normal case (no
accountability) can be distinguished from the exceptional case (accountability
can be established) by controlling certain external knowledge [191].

6.1.1 Controlling the Disclosure of Pseudonyms

By means of pseudonyms, personal data can be modified in such a way that it can
only with a disproportionate effort in time, cost and manpower be related to a
certain person without the knowledge of the pseudonym (to person) mapping. In
the exceptional case, the pseudonyms can be related to a certain person using the
pseudonym mapping. For data controllers who know the pseudonym mapping,

6.1 A Law-driven Approach Using Pseudonyms 45

the pseudonymous data is personal data. For the data controllers who do not
know the pseudonym mapping, the pseudonymous data is practically anonymous
[191, 198].
Hence, for data controllers who do not know the pseudonym mapping, the
pseudonymous data is not subject to the (German) privacy law. While they
only collect, store and process the pseudonymous data, these data controllers
are free from the default prohibition and obligations imposed by the (German)
privacy law (see Chap. 5) [191, 198].
As a result, pseudonyms are a key concept for the multilaterally secure handling
of audit data. In many scenarios pseudonyms actually enable the lawful collection
and storage of audit data.

6.1.2 Legal Disclosure of Pseudonyms

For a given data controller, some given pseudonymized data is anonymous data
in the normal case, until in the exceptional case the original data that was
replaced by the pseudonyms is disclosed1 to the data controller by means of
the pseudonym mapping. Then, the data is personally identifiable again and is
subject to privacy law. For this reason the purpose of pseudonym disclosure must
be chosen such that it is permitted by privacy law, and such that purpose binding
can be effectively enforced. In the following, we consider some legal arguments for
legally permitted purposes for pseudonym disclosure and derive the fundamental
concept and assumption for the proposed approaches in Sect. 6.1.3.
The German Federal Office for Information Security (Bundesamt für Sicherheit in
der Informationstechnik/BSI in German) holds the view that according to §14(2)
BDSG [29] audit data documenting misuse or security policy violations, with the
character of an indictable or regulatory offense, can be used for prosecution [26].
Jaeger argues in some more detail that due to the exemption in §6(3) TDDSG
[27] misuse traces may be accounted for using personal data, if during the service
access it can already be anticipated that this data will be later required for
criminal prosecution. Jaeger finds further support in §6 Sect. 8 TDDSGÄndG
[27], which allows tele-service providers to collect and store personal data of
users, who misuse the tele-service. As a pre-requisite the data controller must
document the clues that corroborate the suspicion of a user misusing the service.
For the purpose of litigation, the service provider is allowed to store and process
the concerning personal data beyond the mandatory time limits.2
1 In this text the term pseudonym disclosure means that the original data, which has

been replaced by a pseudonym, is disclosed. It does not mean that the pseudonym
itself is disclosed. Obviously, the pseudonym conceals some data and is itself always
visible (see Sect. 7.1).

2 Before its amendment, the TDDSG (apart from a few exemptions) generally pro-
hibited the tele-service provider to collect and store personal data, such that the
provider was not in the position even to reconstruct misuse of his service, let alone
identify the responsible user by means of audit data [119, 120].

46 6 Technical Enforcement of Multilateral Security

6.1.3 Conclusions and Main Assumption for the Legal Foundation of
Audit Data Pseudonymization for Misuse Detection

From the legal arguments put forth in Sect. 6.1 to Sect. 6.1.2 we derive the
fundamental concept and the underlying assumption of the approaches presented
in this book. The natural wording used here is related to the more concise terms
used for the more technically inclined elaboration in Part II and Part V.
First, we conclude from the statements of Roßnagel and Scholz (see Sect. 6.1.1)
that during normal system operation it is permitted by privacy law to store clues
(cf. Sect. 12.1: observations of activity) in pseudonymous form in the course of
proceeding and a priori specified misuse activity (cf. Sect. 12.1: disclosure con-
text). As long as the pseudonyms are not disclosed, restrictions of (German)
privacy law do not apply, even if a misuse suspicion is not sufficiently corrobo-
rated over time (cf. Sect. 12.1: the activity level of the disclosure context does
not satisfy the respective disclosure condition).
Second, based on the statements of the German BSI and Jaeger (see Sect. 6.1.2),
we assume that it is permitted by (German) privacy law to make pseudonymous
clues for a misuse accountable by disclosing the pseudonyms in the clues, as soon
as the exceptional situation arises that the misuse activity proceeds to the point
where the misuse suspicion is sufficiently corroborated (cf. Sect. 12.1: the activity
level of the disclosure context meets the respective disclosure condition).
We use the term technical purpose binding (see Sect. 7.2) to denote the notion
of technical enforcement of the conditions for pseudonym disclosure.
Even though this approach restricts pseudonym disclosure to situations where it
is legal to handle personal data, the data controller still is subject to (limited)
obligations of privacy law. Thus, for the case of pseudonym disclosure, precau-
tions need to be taken, before that case occurs. Such precautions are selected
in analogy to the obligations of the data controller. As an example, the data
controller should inform the user that his pseudonym(s) can be disclosed, if the
situation calls for it. Certainly, safeguards must be established to secure the
pseudonym mapping, such that its use is limited to aforementioned situations
(see Sect. 8.2). For more examples for necessary precautions refer to Rossnagel
and Scholz [191].

7

Pseudonyms – A Technical Point of View

Based on the legal framework for pseudonyms described in Chap. 6, in this
Chapter the more technically inclined aspects of pseudonyms are examined. The
terms and concepts associated with the notion of anonymity and pseudonymity
used in this text are introduced in Sect. 7.1. Two properties of pseudonyms are
most important for the approaches presented in this book: Pseudonym disclosure
is examined in Sect. 7.2 and pseudonym linkability is focused in Sect. 7.3. For
a slightly broader perspective, further pseudonym properties are mentioned in
Sect. 7.4. Based on the pseudonym concepts described in this Chapter the
architectural model for secure authorizations is extended for pseudonymity in
Chap. 8.

7.1 Definition of Terms

The terms introduced in the following, are based on the definitions of Pfitzmann
and Hansen for unlinkability and anonymity [174].
Two objects are unlinkable w.r.t. an attacker, if the probability that both ob-
jects are related does not change after any possible observation of the attacker;
otherwise they are linkable. Two objects are related, if they correlate w.r.t. a
feature, e.g. equal content, size or time stamp. Unless noted otherwise, when
we talk about the linkability of two objects, in this text we mean that an at-
tacker can observe that the objects have equal content. An ID is a principal that
uniquely identifies an entity, e.g. a person. Then, an object is anonymous, if it
is not linkable with any ID. Conversely, an object is accountable, if it is linkable
with an ID, i.e. it is not anonymous. An example for an object is an audit record
describing an event.
A pseudonym is a principal that, unlike an ID, cannot be used to identify the
associated entity. An object can be pseudonymized, if it is anonymous after delet-

48 7 Pseudonyms – A Technical Point of View

ing all IDs from the object.1 The term pseudonymization denotes the process of
replacing the IDs in an object with pseudonyms, instead of deleting them. The
respective pseudonym mapping uniquely2 associates each pseudonym used dur-
ing pseudonymization with the ID that was replaced by the pseudonym. Note,
that several instances of a given ID can be replaced with distinct pseudonyms
(see Sect. 7.3).
After pseudonymization, no feature of the object is linkable with some ID.3 The
pseudonymized, i.e. pseudonymous, object is practically anonymous w.r.t. entities
which do not know the pseudonym mapping.4 Entities that know the pseudonym
mapping can disclose the pseudonyms. Pseudonym disclosure is the process of
relating a given pseudonym to the pseudonym mapping. A pseudonymous ob-
ject can be reidentified by replacing each of the contained pseudonyms with the
IDs that are associated with the pseudonyms in the pseudonym mapping. After
reidentification the object is accountable again.
In Sect. 6.1 an approach using pseudonyms was introduced to balance the
conflicting security objectives pseudonymity and accountability. Both security
objectives are directly connected to the controlled pseudonym disclosure (see
Sect. 7.2). Another aspect of pseudonyms is the linkability of pseudonyms for a
given objective, which is required for many services (see Sect. 7.3). Also, many
methods for analyzing audit data do not work without the linkability of prin-
cipals, i.e. IDs or pseudonyms. Considering the above definition of anonymity,
it is obvious that the aspects disclosure and linkability of pseudonyms are not
independent from each other.

7.2 Controlled Disclosure of Pseudonyms

The controlled disclosure of pseudonyms is the controlled ability to make
pseudonymized objects accountable again. This ability is controlled by control-
ling who can use the pseudonymity mapping.

1 Note, that an object is not necessarily anonymous after deleting all IDs from the
object. The object could still be transitively linkable to an ID via other object
features than content.

2 When using group pseudonyms, the pseudonym mapping associates each pseudonym
with all IDs that were replaced with the same pseudonym. Group pseudonyms are
not considered in this text.

3 Note, that the above definition of pseudonymization is rather strict. In practice
it may be desirable to pseudonymize objects only partially. The pseudonymization
approaches proposed in this book allow for pseudonymizing audit data partially. The
text in the following also denotes partially pseudonymized objects as pseudonymized
objects.

4 Note, that in this text the terms of anonymity and pseudonymity sometimes are
used interchangeably w.r.t. entities that do not know the pseudonym mapping.

7.2 Controlled Disclosure 49

In the following, the entity with the predominant security objective of anonymity
or pseudonymity is denoted as IA or subject. Likewise, the entity with the pre-
dominant security objective of accountability is denoted as IC or attacker (w.r.t.
the anonymity or pseudonymity of IA). An entity which IA can trust to protect
IA’s anonymity or pseudonymity is denoted as TA or agent. Analogously, we
introduce TC for accountability. Finally, TAC is an entity which IA and IC can
trust to balance their interests in a fair way.
The disclosure of pseudonyms should be bound to a priori specified purposes.
Purpose binding of pseudonym disclosure can be achieved in an organizational or
in a technical way (see Sect. 7.2.1 and Sect. 7.2.2, respectively). For robustness,
both approaches can be combined (see Sect. 7.2.3) to handle possible error cases
(see Sect. 7.2.4). Section 7.2.5 provides some examples showing how pseudonym
mappings can be implemented, and Sect. 7.2.6 investigates, which entities may
control the pseudonym mapping.

7.2.1 Organizational Purpose Binding

The entity which manages the pseudonym mapping is responsible for performing
reidentification for legal purposes of authorized entities only. If the responsible
handling is conferred to a person, the reidentification is subject to organizational
purpose binding. A correct purpose binding then provides for a fair balance of
the security objectives pseudonymity and accountability in terms of multilateral
security.
A correct organizational purpose binding can only be achieved reliably, if the
reidentifying entity has no predominant interest in merely one of the security
objectives. Hence, IA and IC are not eligible for this function. Instead, IA and
IC can decide to trust the entity TAC to balance their conflict of interests in a
fair way. Alternatively, their trust can be distributed among two entities TA and
TC, e.g. using a threshold cryptosystem [67]. It must be ensured organizationally,
that IC’s ability to reidentify pseudonymized data is restricted, such that IC
needs to involve TAC, or TA and TC for reidentification. As a result, pseudonym
disclosure subject to organizational purpose binding is delayed if TA or TC do
not cooperate in a timely fashion.

7.2.2 Technical Purpose Binding

The purpose of pseudonym disclosure can already be incorporated during pseu-
donym generation. The pseudonym mapping then is made available to IC in a
protected form, such that IC normally cannot use it to reidentify pseudonymized
audit data. Additionally, the pseudonymized audit data is supplemented with
certain information that neutralizes the protection of the pseudonym mapping
under certain conditions. The purpose of pseudonym disclosure determines under

50 7 Pseudonyms – A Technical Point of View

what conditions the protection becomes ineffective, and the pseudonym mapping
can be used for reidentification. The pseudonyms can be disclosed only if these
conditions are met. If the protection of the pseudonym mapping is customized for
the disclosure conditions, such that it cannot be circumvented, the pseudonyms
are subject to disclosure with technical purpose binding.
In contrast to organizational purpose binding, the purpose is incorporated in
technically implemented conditions, i.e., the disclosure conditions are specific
to the given purpose and application. Given that the disclosure conditions con-
trol the technical purpose binding, the conditions must only be controlled by
an entity which is trusted by IA and IC to balance the conflicting interests ac-
cording to the purpose and in a fair way (here TAC). When technical purpose
binding of pseudonym disclosure is employed, IC can reidentify pseudonymized
data promptly and without the cooperation of TAC, as soon as the disclosure
conditions are satisfied.

7.2.3 Combining Organizational and Technical Purpose Binding

A situation, which cannot be properly handled using technical purpose binding
alone, arises when the disclosure conditions do not completely model the intended
purpose. To be able to disclose already generated pseudonyms after revising the
disclosure conditions, these pseudonyms would have to be re-generated using the
revised parameters. In general, this is not a viable option.
If it is required to be able to disclose already generated pseudonyms in accor-
dance with revised disclosure conditions, the technical purpose binding should
be complemented with organizational purpose binding. Then, in the usual case
the technical purpose binding allows for a timely reidentification, and in the
seldomly occurring situation described above, the slower organizational purpose
binding can be used.

7.2.4 Handling Disclosure-occurrences that are Incompatible with
the Purpose

The complementary use of organizational purpose binding compensates for the
problem of technical purpose binding that pseudonymized data cannot be rei-
dentified, if the disclosure conditions have not been completely modeled (error
class 1).5 However, a flawed model of disclosure conditions may also result in
the controlled disclosure of pseudonyms, which actually do not sufficiently cor-
roborate a misuse suspicion (error class 2).6 To mitigate the latter problem, the
5 In terms of misuse detection, error class 1 corresponds to false negatives, i.e., no

alarm is generated in spite of the existence of a sufficiently corroborated misuse
suspicion.

6 In terms of misuse detection error, class 2 corresponds to false positives, i.e., an
alarm is generated, though no sufficiently corroborated misuse suspicion exists.

7.2 Controlled Disclosure 51

following approach is proposed for the disclosure of pseudonyms that are subject
to technical purpose binding.
Each pseudonym disclosure conducted by IC is recorded, together with a
purpose-oriented justification and together with the data that is required to
judge the legitimacy of the disclosure. The data subject IA should be informed
of the respective disclosure. This could be implemented in such a way that IC
must give clearance for each recorded disclosure to be brought to the attention
of either IA or TA. If the detailed inspection of the recorded disclosure yields
the occurrence of a class 2 error, IA can be informed immediately and directly.
However, if the inspection yields a sufficiently corroborated suspicion that IA
misused the service, it could be counterproductive to inform IA immediately. In-
stead, IC could defer informing IA for the duration of the investigation and give
proper justification. In return, TA, who advocates the pseudonymity interest of
IA, can read all recorded reidentifications that IC has deferred, together with
the justification. As such, TA can officiate his control function (organizational
purpose binding).

7.2.5 Example Implementations of the Pseudonym Mapping

There exist several alternatives to implement the pseudonym mapping. If it is
implemented as a table, the table must be protected appropriately. To disclose a
pseudonym, it is located in the table, where it is associated with the respective
ID.
If the pseudonym mapping is implemented as a cryptographic function, the func-
tion can be made public, but the secret parameters must be protected. The func-
tion can be a cryptographic decryption function, such that a pseudonym can be
disclosed by decrypting the pseudonym using the secret parameters. Conversely,
pseudonyms are generated by encrypting an ID using the corresponding en-
cryption function and the corresponding parameters. In this setting, technical
purpose binding can be implemented by means of cryptographically sharing the
decryption key, which is the approach followed in Part II and Part V.
An alternative approach uses a cryptographic and collision-resistant (parameteri-
zable) hash function instead of an encryption function (see Jaeger pseudonymizer
in Sect. 9.2). In this case, the hash function is one-way, such that according to
the definitions in this text, there is no pseudonym mapping for controlled pseu-
donym disclosure. Note, that this approach is adopted in Part V for technically
bound pseudonym linkability (see Sect. 7.3).
However, if the parameters and candidate IDs are known, the pseudonyms still
can be disclosed using a dictionary attack. The hash values, i.e. pseudonyms,
for all candidate IDs are computed and compared to the pseudonyms to be
disclosed. In the same way the ID of a suspicious user can be found in a set of
pseudonyms by generating the respective pseudonym and comparing it to the set

52 7 Pseudonyms – A Technical Point of View

of pseudonyms. Note, that these attacks also work for the other implementation
alternatives.
In Part V a combination of hashing and encryption is used, where the hash-
values are the pseudonyms seen by the application and which provide suitable
linkability, and the cryptograms can be used for pseudonym disclosure.

7.2.6 Controlling the Pseudonym Mapping

The pseudonym mapping and the pseudonymized data, which is stored with a
data controller who can use the pseudonym mapping, are personal data w.r.t.
this data controller and thus are subject to privacy law [191]. Therefore, such
data controllers must arrange for the protection of the personal data. In the
following is specified, who may control/store the pseudonym mapping [174, 191].
For each case, additional information is given: Is the data considered to be per-
sonal data for the data controller IC, such that it is subject to privacy law? Can
we achieve multilateral security w.r.t. pseudonymity and accountability, or only
unilateral security w.r.t. to one of the security objectives? Will IC have to in-
teract with the party who controls the pseudonym mapping for reidentification,
or can IC reidentify the data autonomously? If organizational purpose bind-
ing is used, IC needs to cooperate with the entity who controls the pseudonym
mapping. In the case of technical purpose binding IC needs the pseudonymized
data including the information to neutralize the protection of the pseudonym
mapping in order to perform reidentification.

Public: personally identifiable; unilateral security (accountability); autonomous
disclosure

Data controller (IC): personally identifiable (not personally identifiable for
third parties); unilateral security (accountability); autonomous disclosure

Agent (TAC, or TA and TC): not personally identifiable; multilateral security,
if the agent(s) are trustworthy, otherwise unilateral security; disclosure re-
quires cooperation of the agent(s)

Data: not personally identifiable; multilateral security, if the pseudonymizing
agent TAC is trustworthy, otherwise unilateral security; autonomous disclo-
sure

Subject (IA): not personally identifiable; unilateral security (anonymity); dis-
closure requires cooperation of the subject

A pseudonym mapping that is known to the public or controlled by the data
controller IC cannot afford anonymity of IA w.r.t. IC. At the other end of the
spectrum we find pseudonym mappings which are merely controlled by the sub-
ject IA. If IA decides not to disclose his pseudonym(s), the pseudonymized data
remains anonymous. As a result, for pseudonym disclosure subject to technical

7.3 Linkability and Uncontrolled Disclosure 53

and/or organizational purpose binding, the pseudonym mapping should be con-
trolled by trustworthy agents. The function of the pseudonymization agent TAC
may be carried out by a trustworthy privacy protection official (PPO). See also
Sect. 8.1.1.

7.3 Linkability and Uncontrolled Disclosure of
Pseudonyms

From the definition of anonymity used in this text follows the influence of link-
ability on the anonymity of a given object. For more concise definitions refer to
Steinbrecher and Köpsell [210]. The more often and in the more different contexts
a given pseudonym is used, the more other objects are directly or transitively
linkable with that pseudonym. This increases the probability that in the set of
objects, which are linkable to a given pseudonym, there is an accountable object,
such that an uncontrolled disclosure of the pseudonym w.r.t. this set of objects
is feasible.
Therefore, a given pseudonym should be used as scarcely and in as few contexts
as possible, i.e., it is recommended to frequently change the pseudonym for a
given entity, such that the pseudonyms of the entity are unlinkable. Accordingly,
pseudonyms can be classified w.r.t. the contexts where they are used. Pfitzmann
and Hansen [174] propose certain contexts in which a given pseudonym is used
exclusively. In the order of increasing resistance against uncontrolled disclosure
the pseudonyms are denoted as:

subject pseudonym: used in all contexts
role pseudonym: used in the context of a specific role
relationship pseudonym: used in the context of a specific communication rela-

tionship
role-relationship pseudonym: used in the context of a specific role in the context

of a specific communication relationship
transaction pseudonym: used in the context of a specific transaction

Also the purpose of processing pseudonymized data can be incorporated in the
process of pseudonym generation, which is comparable to the technical purpose
binding of pseudonym disclosure. The purpose of processing determines the pa-
rameters of the algorithm used for the data processing, and therewith in which
contexts the pseudonyms need to be linkable. In contrast to the purpose binding
of pseudonym disclosure, for the purpose binding of pseudonym linkability the
pseudonyms are usually not supplemented with additional protected informa-
tion.

54 7 Pseudonyms – A Technical Point of View

If the processing of the pseudonymous data requires that the pseudonyms are
linkable in a specific context, the pseudonyms for a given subject are generated
such that they are directly linkable (by content). Otherwise the pseudonyms of
the subject are generated to be unlinkable. This is the approach for pseudonym
linkability followed in Part V.
The processing of the pseudonymized data by the service usually is in the interest
of the data subject as well as of the data controller, such that no direct conflict
of interest exists. However, the degree of pseudonym linkability influences the
possibility of uncontrolled pseudonym disclosure, and as such, indirectly affects
the interests of IA and IC. Hence, the pseudonym generation must be controlled,
in analogy to the purpose binding of disclosure, by TAC, so that the trade-
off between linkability and uncontrolled disclosure, which is required for the
processing of the pseudonymous data in the mutual interest, is not extended to
the disadvantage of IA.

7.4 Further Properties of Pseudonyms

The scientific community has published various approaches to provide for ad-
ditional features of pseudonyms and property statements [174, 135], which are
addressed in detail elsewhere. Useful examples are:

• mandatory cooperation of specific responsible agents during the certification
of property statements and/or the generation of pseudonyms;

• transferable pseudonyms, with or without the requirement for disclosure of
valuable secret information during the authentication of the presenting party;

• pseudonym transformation while maintaining the validity of the carrying
property statement;

• limiting the number of available pseudonyms per subject;
• limiting the number of uses of a pseudonym or a property statement;
• limiting the period of validity of a property statement;
• allowing certain parties to revoke the validity of or to block a property state-

ment at any time.

8

An Architectural Model
for Pseudonymous and Secure Authorizations

Based on the framework for pseudonyms given in Chap. 7 the model introduced
in Chap. 3 is extended by the concept of pseudonymity in this Chapter. The
property statements from Sect. 3.3 are interpreted in terms of pseudonyms in
Sect. 8.1. The architecture introduced in Sect. 3.4 is extended by reidentification,
audit data collection, and audit data processing in Sect. 8.2. Also, the control
requirements are extended in Sect. 8.2. The application domain of the architec-
tural model and the attacker model are described in Sect. 8.3. Finally, different
architectures and the specific control requirements are given in Sect. 8.4. Most
notably, the simplified control requirements for technical purpose binding over
organizational purpose binding are explained in Sect. 8.4.1. The various archi-
tectures presented in this Chapter are compared in Chap. 9.

8.1 Pseudonymous Property Statements

In many cases person-identifying IDs are not necessary to verify certified property
statements and to provide a service [217]. Mostly, it is sufficient that the included
attributes are correctly associated with the presenting entity, that the property
statement is valid and that it was certified by an agent, whom the verifier or the
service trust. As an example, an admission ticket to the zoo (see Sect. 2.2) does
not contain the name of the ticket owner, but a unique ticket number, which
can be interpreted as a pseudonym of the ticket owner in the context of the zoo
service.
If for a given application IDs are not necessary, property statements and their
references can be pseudonymized by replacing the subject principal with a pseu-
donym that has suitable properties (see Sect. 8.1.1). The German signature act
already allows for pseudonymous certificates (§7 Sect. 1-3 SigG [30]) [191]. It
must be ensured, that the other components of the property statement do not
contain IDs of the subject entity or allow inferences by virtue of uniqueness. Ad-
ditionally, in the model it is assumed that the recipients of a property statement

56 8 An Architectural Model for Pseudonymous Authorizations

do not make any observations after which the pseudonym is linkable with an
ID of the subject entity. Aside from the controlled pseudonym disclosure by the
agent, the property statement is practically anonymous for the recipient.
That way it is not necessary for the zoo ticket booth employee to learn the name
of the student. Rather, it is important that the property student is properly asso-
ciated with the person which presents a valid student ID,1 and that the certifying
university is known to and trusted by the zoo management.2 To that effect, the
student ID could be designed to be pseudonymous, by using the registration
number of the student for the subject component, instead of the student’s name.
On the one hand, the agent is additionally responsible to the interest of account-
ability of the recipients of the property statement, for disclosing pseudonyms in
accord with his pre-engaged policy to specific entities for specific purposes only.
On the other hand, the agent is also responsible to the interest of the subject
entity in pseudonymity, for protecting the pseudonym mapping and adhering to
the declared policy w.r.t. pseudonym disclosure and linkability.

8.1.1 Suitable Pseudonyms

In order to choose pseudonyms that are suitable for pseudonymous property
statements, the desired properties must be determined for both aspects of pseu-
donyms – (controlled) disclosure and linkability.
Pseudonym mappings that are known to the public or controlled by the data
controller of the pseudonymized data are not useful for pseudonymous property
statements, because only unilateral security can be achieved in favor of account-
ability, but to the disadvantage of pseudonymity. Conversely, also pseudonym
mappings that are controlled by the subject entity are not useful for pseudony-
mous property statements, because only unilateral security can be achieved in
favor of pseudonymity, but accountability cannot be dependably established (see
Sect. 7.2.6). To that effect, the useful alternative are pseudonym mappings that
are controlled by agents.
An agent can bind pseudonym disclosure technically and/or organizationally to
the purpose declared in his policy (see Sect. 7.2). An agent also can limit the
use of pseudonyms to specific contexts (see Sect. 7.3). In principle, the complete
spectrum from subject to transaction pseudonyms is possible. However, trans-
action pseudonyms are not useful, if references to certified property statements
are used. After each transaction the pseudonym of the property statement and
of the reference would have to be renewed synchronously, i.e., in the statement
repository and at the user. To employ transaction pseudonyms, it is advised to
refrain from the use of references to property statements.
1 In this case the term student ID does not refer to the ID in the subject component

of the property statement, but to the property statement itself.
2 Note, that in the real world it is rarely the case that student IDs from remote

universities are recognized as being invalid, even in the case they actually are.

8.2 Role of the Attacker Model for Control Requirements 57

8.2 Role of the Attacker Model for Control Requirements

The degree of anonymity achieved by the use of pseudonyms should be propor-
tional to the risk of collection and processing of the given personal data and to
the effort required for a successful attack on the pseudonymity. Determining the
degree of anonymity that a system for anonymous property statements provides,
requires a system-specific analysis of the potential working points of an attacker
w.r.t. linkability and disclosure [210]. A precise assertion of the degree of ano-
nymity that is achievable with a given architecture requires a detailed analysis
of the implemented system w.r.t. a given attacker model. Systems implementing
different architectures for anonymous or pseudonymous property statements can
then be compared w.r.t. a given attacker model.
However, even if we forbear from determining the degree of achievable anony-
mity, we can still identify certain properties of architectures for anonymous or
pseudonymous property statements which give information about the working
surface of an attacker, about the dependability of the property statements and
about the practicability of the respective architecture (see Sect. 9.1).
For the following considerations, the attacker model specifies the possibly col-
laborating parties which can collect and correlate personal data (see Sect. 8.3).
The architecture of a system for pseudonymous or anonymous property state-
ments determines when and where personal data can be pseudonymized in the
system, i.e., against what attacker models it can provide protection. The earlier
in the data path the personal data is anonymized or pseudonymized, the more
system components the attacker may control, without impairing the achievable
anonymity. As a result, given an attacker model, a suitable architecture can be
chosen (see Sect. 8.4). However, it must be kept in mind that the attacker may
be able to access (personal) data on the different layers of the OSI reference
model [188]. The semantics of property statements and services are not limited
to the application layer and need to be interpreted for all OSI layers. A suitable
architecture for anonymization or pseudonymization should be chosen for each
layer where the attacker can access data.
For the design of architectures for anonymous or pseudonymous property state-
ments several factors need to be considered w.r.t. the given attacker model.
Considering pseudonymity in terms of multilateral security, i.e., not only ano-
nymity, but also accountability, it is imperative that the pseudonym mapping is
not controlled by an agent alone, who is predominantly interested in merely one
of the security objectives, i.e. accountability or anonymity. Hence, the system
components controlled by the involved parties need to be defined and isolated,
preferably technically, otherwise organizationally (see Sect. 8.4). The method
for pseudonymization and for the controlled pseudonym disclosure determines
the number of mandatorily cooperating parties (see Sect. 7.2 and Sect. 8.4.1). If
possible, pseudonym disclosure and linkability should be parameterized to allow
for a fair balance of interests. The parameter values should be announced to the
affected parties or to their representatives.

58 8 An Architectural Model for Pseudonymous Authorizations

8.3 Domain of Application and Corresponding Attacker
Model

Considering architectures for anonymization or pseudonymization, the given at-
tacker model is significant, because it determines the control requirements and
limits in which phase (see Sect. 3.4.3) IDs must be pseudonymized at the latest.
The pseudonyms need to be introduced during a phase that is processed before
the phases are processed that are within the observable scope of the attacker,
so that the attacker cannot make any observations that allow him to link a
pseudonym to a subject ID.
In the following, the basic model from Fig. 3.4 is extended by the site security
officer (SSO) of the service provider, who, by means of audit data, observes and
analyzes the behavior of the service users, and if necessary, conducts appropriate
response (see Fig. 8.1). The audit data is collected by the audit component of
the service and is conveyed to the analysis component of the SSO (see ‘E1’ in
Fig. 8.1). According to the purpose of analysis, i.e. purpose of processing, the
analysis component generates event reports and provides them to the response
component (see ‘E2’ in Fig. 8.1). The response component reacts on the event
reports, for example by informing the SSO and by suggesting appropriate action.
An event report can comprise an analysis context, which is a sub-set of the audit
data.
For this text we consider an intrusion detection system (IDS) as an instance
of the described additional components, where the purpose of processing of the
analysis component is the detection of misuse scenarios3 that are caused by
the service users. In IDS parlance, an event report is an alarm, which contains
as analysis context the clues corroborating the misuse suspicion. The clues are
included in the form of audit records documenting the progression of the misuse,
in order to support further investigation (see Sect. 6.1.2).
In this architecture, the SSO can observe the behavior of the service user only by
means of the audit data, which is provided by the service’s audit component. The
SSO’s primary objective is sustained service security. Therefore, the users do not
trust the SSO unconditionally w.r.t. a fair balance between anonymity and ac-
countability. Consequently, and though it may appear harsh, the SSO is modeled
to be part of the possible threat or attacker of anonymity or pseudonymity. Thus,
in the following only architectures are inspected, which introduce pseudonyms
before the audit data is provided to the SSO-controlled analysis component. In
return, the SSO is not subject to legal restrictions and obligations w.r.t. the
pseudonymous audit data (see Sect. 6.1.1).

3 Models of misuse scenarios are activity patterns that are known to the IDS, i.e., here
we consider so-called misuse detection, but not so-called anomaly detection.

8.4 Architectures and Control Requirements 59

8.4 Architectures and Control Requirements

After extending the basic model by components for audit data collection, ana-
lysis and alarm response (see Fig. 8.1), the model is modified to allow for
pseudonymization of user IDs, before they can be observed by the SSO in the au-
dit data. As contemplated in Sect. 8.3, pseudonymization can be integrated with
one or more phases (see Sect. 3.4.3) occurring before the audit data is provided to
the SSO, i.e., during certification, authorization or after audit data generation,
but before the transmission of the audit data (see Fig. 8.2 to Fig. 8.5).4

The graphical elements in Fig. 8.1 to Fig. 8.6 call for some explanation. The
solid arrows indicate the flow of accountable and certified or evidenced prop-
erty statements or accountable references to property statements. The dashed
arrows indicate the flow of anonymous or pseudonymous property statements
or references thereof. The dotted arrows indicate the flow of the pseudonym
mapping. Each fat grey frame indicates the control requirement of a certain
entity w.r.t. the framed components. According to Sect. 2.3 an entity B must
not control the components implementing the interest IA of another entity A,
which is in conflict with the interest IB of B. The dark grey frames represent
the user’s interest in pseudonymity, i.e., A=users, IA=anonymity/pseudonymity,
B=SSO, IB=accountability. Conversely, the light grey frames represent the
SSO’s interest in accountability, i.e., A=SSO, IA=accountability, B=users,
IB=anonymity/pseudonymity. Finally, the black boxes together implement a
function of multilateral security. Note, that they are surrounded by a dark as well
as by a light grey frame, i.e., the interests are clashing and need to be balanced.
In the following, the control and trust requirements of the different architectures
are investigated.
As motivated in Chap. 6, the easiest solution is to provide only unilateral secu-
rity, i.e., to give up all security objectives that are in conflict with the security
objectives of a given entity. According to Sect. 2.3, Fig. 8.1 shows how user
anonymity is sacrificed in favor of the accountability requirements of the SSO.
The SSO here needs to trust the certifier, the authorizer and the service w.r.t.
accountability. Since the user’s requirement for anonymity is in conflict with
the SSO’s requirement for accountability, the SSO could not trust the user to
reidentify his property statements in a dependable way.
By virtue of the same argument, a unilaterally secure architecture can be built in
favor of anonymity. In such an architecture the certifier does not verify that the
subject component provided by the user contains an ID which actually identifies
the user (see plausibility check in Fig. 8.2).5 The user’s management compo-
nent can then choose arbitrary pseudonyms for the property statement and the

4 Note, that the versions of the model in Fig. 3.9 to Fig. 3.12 can also be extended to
support pseudonymity. Anyhow, the properties of the various possible versions and
combinations are not examined in this text.

5 Note, that this is actually the case for many web-based services on the Internet.

60 8 An Architectural Model for Pseudonymous Authorizations

user

m
an

ag
em

en
t

verification

certification

verification

authorization

verification

service

audit component

response

analysis

site security
officer

C2C2C2C2

B2

C2

A2

B1

A3

A1

B3

C1

E1
E2

Fig. 8.1. Unilateral security: accountability

officer
site security

user

m
an

ag
em

en
t

plausibility check

certification

verification

authorization

verification

service

audit component

response

analysis

C2C2C2C2

B2

C2

A2

B1

A3

A1

B3

C1

C2

E1
E2

Fig. 8.2. Unilateral security: management anonymizes

corresponding pseudonym mapping is also controlled by the user’s management
component. Since the SSO would have to rely on the user to disclose his pseu-
donyms, which he actually does not trust him for, dependable accountability is
not possible (see Fig. 8.2 and Sect. 8.1.1).
If an entity, which certifies property statements under pseudonyms, refuses to
disclose the pseudonyms, also merely unilateral security can be achieved in favor
of anonymity. The SSO cannot trust such an entity w.r.t. his security objective
accountability. In Fig. 8.3 to Fig. 8.5 the light grey frame around the entity would
be missing as well as the dotted arrow and the reidentification component. The
verification and reidentification boxes would not be filled out.

8.4 Architectures and Control Requirements 61

officer
site security

user

m
an

ag
em

en
t

verification reidentification

certification of pseudonyms

verification

authorization

verification

service

audit component

response

analysis

C2C2C2C2

RA2

RA3
RA1A2

B2

C2

E1
E2

B1

A3

A1

B3

C1

Fig. 8.3. Multilateral security: certification of pseudonyms

user

officer
site securitym

an
ag

em
en

t

verification

certification

verification reidentification

authorization of pseudonyms

verification

service

audit component

response

analysis

C2C2C2C2C2C2C2C2

RB2

RB3
RB1

A2

B2

C2

B1

A3

A1

B3

C1

C2

E1
E2

Fig. 8.4. Multilateral security: authorization of pseudonyms

The architectures for unilateral security can be easily realized, because the entity
who benefits from the unfair situation merely needs to trust agents who enforce
only his security objectives, which is an easier task than balancing conflicting
interests.
Architectures providing multilateral security take conflicting interests into ac-
count. In Sect. 2.3 and Sect. 8.2 was derived that the entities who pursue the
conflicting interests should not be able to control the objects of interest, i.e.
the pseudonyms in the property statements. Instead, for multilateral security
the pseudonym mapping should be controlled by one or more agents, which the
users and the SSO need to trust (see Fig. 8.3 to Fig. 8.5). While the agent is
responsible to balance pseudonymity and accountability, and controls the com-

62 8 An Architectural Model for Pseudonymous Authorizations

user

officer
site security

verification

certification
m

an
ag

em
en

t verification

authorization

verification reidentification

service

audit component pseudonymization

response

analysis

C2C2C2C2

A2

B2

C2 RC1

E1

B1

A3

A1

B3

C1

E2

RC2

E3
RC3

Fig. 8.5. Multilateral security: pseudonymization of audit data

user

m
an

ag
em

en
t verification

service

audit component

reidentification

pseudonymization

response

analysis

site security
officer

E1

R1

E2

R2

R3
E3

(a) organizational purpose binding

user

site security

m
an

ag
em

en
t

audit component

service

pseudonymization

reidentification

analysis

responseverification

officer

E1 E2
E3

R1

R2

R3

(b) technical purpose binding

Fig. 8.6. Purpose binding of controlled pseudonym disclosure

ponents that implement these functions, the users and the SSO must not have
any control over the very same components.
The architectures for multilateral security are harder to implement, since for the
operation agents are required, who both, users and SSO, can trust simultane-
ously to balance their interests in a fair way. In Sect. 9.1 the trust problem is
investigated in some more detail for the different layers. One solution to solve
this problem is to disperse the responsibility, such that the interests can only be
satisfied, if several agents cooperate. This can be technically realized by multiple

8.4 Architectures and Control Requirements 63

encryption, such as in the Mix approach [80], or by using threshold cryptosys-
tems [212, 67]. These advanced options are out of the scope of this text.
Figure 8.3 to Fig. 8.5 depict only architectures and control requirements for the
organizational purpose binding of controlled pseudonym disclosure. Section 8.4.1
describes how the control requirements can be relaxed by using technical purpose
binding for pseudonym disclosure, instead of organizational purpose binding.

8.4.1 Influence of Purpose Binding on Control Requirements

Figure 8.6 shows for the architecture with audit data pseudonymization at the
service layer (which is the architecture used for our approach in Part II), how
the control requirements can be relaxed by using technical purpose binding for
pseudonym disclosure, instead of organizational purpose binding.6

For technical purpose binding the pseudonym mapping is provided to the reiden-
tifier in a protected form (see ‘R1’ in Fig. 8.6b).7 However, the pseudonymous
audit data is supplemented with information needed to neutralize the protection
of the pseudonym mapping (see ‘E2’ in Fig. 8.6b). Due to the nature of the
protection of the pseudonym mapping, reidentification is only possible in accor-
dance with the a priori defined purpose of controlled pseudonym disclosure. As
a result, the user does not need to trust the entity any more, which controls
the reidentification component. Hence, the SSO may control the reidentification
component and may disclose pseudonyms in a timely and autonomous fashion,
as soon as the respective purpose permits.
Technical purpose binding is also possible in the certification and authorization
layers of the model, but yields varying benefit (see Sect. 9.1).

6 As proposed in Sect. 7.2.3, Sect. 16.6 and Sect. 28.4.2, organizational and techni-
cal purpose binding can be employed simultaneously to complement one another.
Naturally, both methods use an individual pseudonym mapping, such that ‘R1’ in
Fig. 8.6a and Fig. 8.6b must be considered individually, as well as the respective rei-
dentification component. The control requirements for the distinct reidentification
components remain as depicted in Fig. 8.6a and Fig. 8.6b.

7 In Sect. 16.3 we propose providing the pseudonym mapping inlined with the
pseudonymized audit data. In such a setting the arrow ‘R1’ in Fig. 8.6b is obso-
lete.

9

Comparing Architectures

In Sect. 9.1 criteria are given to compare the individual phases of service uti-
lization w.r.t. pseudonymization within the architectural model introduced in
Chap. 8. Using numerous examples, in Sect. 9.2 it is shown how the architectural
model can be used to classify existing privacy-enhancing technologies (PETs).
Finally, in Sect. 9.3 the related work on PETs is separated into direct and indirect
audit data pseudonymization. Direct audit data pseudonymization is examined
in more detail in Chap. 10.

9.1 Criteria and Comparison

Figure 8.2 to Fig. 8.5 depict the different phases or layers where pseudonyms
can be introduced in the model, such that the analysis component works only
on pseudonymized audit data. Introducing pseudonyms in a given layer or phase
has specific benefits and disadvantages, which are investigated in the following
and summarized in Table 9.1.

Table 9.1. Summary of architecture properties, grouped by relation to the issues of
trust, security and cost of deployment. Each criterion can be ‘

√
’=met, ‘−’=not met,

or ‘%’=irrelevant in the given context

property criteria pseudonymizing entity
management certifier authorizer service

multilateral security − √ √ √

independence of service
√ √ − −

dependable attributes − √ √
%

technical purpose binding − − √ √

verifiability of pseudonyms b.a.
√ √ √ −

independence of user − − − √

independence of infrastructure
√ − − √

66 9 Comparing Architectures

Multilateral Security

In the model can multilateral security only be supported by entities which do
not pursue one of the conflicting interests that they are supposed to balance. In
other words, the pseudonymizing agents should take a neutral position w.r.t. the
security objectives pseudonymity and accountability. In the model, such entities
are the certifier, the authorizer and the service (cf. criterion Independence of
Service for the service). Note, that these entities could still act unilaterally in
favor of only one of the security objectives.
In contrast, entities pursuing merely one of the conflicting security objectives
are expected to act only unilaterally in their own interest, such as the user
management component.

Independence of Service

Even if an entity does not itself pursue a certain security objective, the orga-
nization it is affiliated with and which it depends on, still can pursue a certain
security objective. Due to the dependence on an organization, the entity’s activ-
ity could be biased in favor of the organization’s interests.
When selecting a certifier as pseudonymizer this problem can be avoided. This is
not necessarily the case, when an authorizer shall act as a pseudonymizer. Due
to the fact that authorizations are tightly coupled to the service, the authorizer
often also is associated with the service.
In the real world, one hopes to avoid the problem of biased decision-making
by conceding an elected person a secure position within the organization, such
that he can make decisions that are in conflict with the organization he depends
on, without thereby threatening his own employment. Such a position has been
created by the German labor law for the works council and by the German
privacy law for the privacy commissioner.
However, the extent of dependence of a person on an organization may influence
the probability that the person is tempted to act unilaterally in the interest of
the organization, instead of balancing the interests. In terms of the model, this
means that the service users are less willing to trust an authorizer, which is
tightly coupled to the service provider, or the service provider itself, to protect
the user’s pseudonymity. Conversely, the users would straightforwardly trust an
entity to protect their pseudonymity, if it is independent of the service, such as
the certifier or the user’s management component.

Dependable Attributes

Depending on which entity responsibly certifies a pseudonymous property state-
ment, can the evaluating party rely on the statement, i.e. that the respective en-
tity or person actually enjoys the certified properties. It is expected that an agent,

9.1 Criteria and Comparison 67

which pursues the security objectives of the service provider, can be trusted to
provide dependable attributes in property statements. Conversely, if the user’s
management component affirms that the user enjoys certain properties with-
out providing proof, this statement is not necessarily dependable (see Sect. 2.3).
Note, that in the case, where the service pseudonymizes audit data, no attributes
are certified, such that this criterion is meaningless.

Technical Purpose Binding

While in Sect. 8.4.1 technical purpose binding of pseudonym disclosure is de-
scribed for audit data, in principle it can also be realized for the certifier or the
authorizer.
Considering technical purpose binding for the certifier, one has to bear in mind
that a given certificate is used to acquire authorizations for various services with
various purposes for processing and for audit data analysis. The pseudonyms and
the respective technical purpose binding would have to support all of these antic-
ipated purposes for disclosure as well as linkability. This would come along with
a massive erosion of the pseudonymity of the respective certificates, such that
it seems inappropriate to realize technical purpose binding for pseudonymizing
certifiers.
This problem does not apply to pseudonymizing authorizers. Technical purpose
binding seems to be a useful concept to be implemented for pseudonymizing
authorizers.
Finally, property statements made by the user’s management component cannot
be dependably accounted to the user, such that the effort for any purpose binding
would be a waste.

Verifiability of Pseudonyms before Service Access

As long as pseudonyms are introduced before the service access phase, the service
can verify the pseudonymous authorization and the properties of the pseudo-
nyms. Service requests with invalid pseudonyms can be detected by the service’s
verification component and can be rejected to avoid losses. But, if pseudonyms
are introduced after the access decision is made, e.g. when pseudonymizing audit
data, detecting invalid pseudonyms cannot help to avoid the commenced service
access. Note, that this criterion is complementary to the criterion Independence
of User.

Independence of User

If the pseudonymization involves a software component that is controlled or
operated by the user, the pseudonymization is said to be dependent on the user.

68 9 Comparing Architectures

On the one hand, this leaves the user in control, such that he is responsible for a
proper use. On the other hand, the service provider is anyway obliged to comply
with the privacy law and cannot shift this obligation to the users (see Sect. 5.2
and Sect. 5.5). Moreover, a software component, which needs to be made available
to the user, generates additional cost. From this perspective, independence of the
user can be valued positively. Note, that this criterion is complementary to the
criterion Verifiability of Pseudonyms before Service Access.

Independence of Infrastructure

The architectures based on certificates and authorizations require trustworthy
agents for certification and authorization, respectively. The effort for establish-
ing such an infrastructure must not be underestimated. Experiences with pilot
projects for anonymous communications services and for electronic cash show
that these are quite time-consuming and expensive endeavors, which only a few
service providers could afford [104]. Moreover, similarly complex infrastructures
such as PKI or Passport still are not in widespread use, despite the availabil-
ity of mature technology [98]. Independence of infrastructure therefore is in the
interest of a quick and cost-efficient deployment of anonymity or pseudonymity.

9.2 Example Architectures for Pseudonymous
Authorizations

In the following, for each of the pseudonymizing entities in Table 9.1, exem-
plary privacy-enhancing technologies (PETs) are given. The selection does not
claim to give a comprehensive or representative survey over PETs. The intention
is rather, to give an impression how the model can be used to classify PETs.
Also, the scope is limited to architectures for pseudonymous or anonymous au-
thorizations. The text does not cover all possibilities for acting pseudonymously
or anonymously, for example anonymous publishing [199, 104], anonymous elec-
tions [199], anonymous auctions [199], anonymous (peer-to-peer) file-sharing [70],
Private Information Retrieval (PIR) [48] and its applications [124] are not con-
sidered.
In the literature currently three other approaches or models to describe anony-
mous or pseudonymous authorizations are known. In the following, these ap-
proaches are briefly outlined and later accounted for, where the respective enti-
ties and the corresponding components are discussed.
Alamäki et al. define various functional components (Profile Broker, Identity
Broker, Authenticator) that are required for architectures for anonymous or
pseudonymous authorizations [2], however without distinguishing the respective
properties and specifying the control requirements.

9.2 Example Architectures for Pseudonymous Authorizations 69

The Dutch privacy authority Registratiekamer together with the information and
privacy commissioner of Ontario, Canada, developed a model for information sys-
tems with a focus on privacy [217, 23]. Based on this model, the authorization
process, including the respective audit data, is described in analogy to the ar-
chitecture in Fig. 3.11, where the service holds the property statements, such
that no further responsible agents are needed and the service needs not to verify
the validity of the property statements. Accordingly, the users merely obtain ref-
erences to the statements about their properties. A so-called Identity Protector
can be placed at several locations in the model. The Identity Protector acts as
a pseudonymizing entity which separates components where user IDs are known
from components, where merely the respective pseudonyms are processed. For
each proposed placement of the Identity Protector the resulting architecture is
described, however without distinguishing the respective properties and specify-
ing the control requirements. A later study about privacy in intelligent software
agent systems gives alternatives for applying and implementing the Identity Pro-
tector [22].1

The third approach describes Privacy-enhancing Identity Management (PIM),
where the user decides on his discretion, who can get which of his personal data,
and where the user can separate his activity in different spheres, such that differ-
ent addressees of his activity may have a different view of the partial identities
(personae) of the user [111]. PIM comprises the applications, the middleware and
the communication infrastructure [51, 52]. At the application layer the identity
manager of the user (cf. ‘management’ in our model) and the service provider (cf.
‘service’ in our model) negotiate the requirements for partial identities (repre-
sented by property statements in our model). Beyond anonymous authoriza-
tions this approach also addresses e-commerce and e-government. Therefore,
PIM leverages not only pseudonymizing certifiers and authorizers (see below)
and an infrastructure for anonymous communication (see below, anonymity of
sender and/or recipient), but also requires additional mediators or trustees for
the digital exchange of goods, settling of liabilities, electronic payment (see below
electronic cash), and finally, the delivery of physical goods in the real world.
In the following, the three described and rather general approaches to PETs,
as well as stand-alone PETs are mapped to the terms and architectures of our
model, i.e. to anonymization or pseudonymization at the management layer (see
Sect. 9.2.1), at the certification layer (see Sect. 9.2.2), at the authorization layer
(see Sect. 9.2.3) or at the service layer (see Sect. 9.2.4).

9.2.1 Architectures with Pseudonymizing Management

Identity Protector: In the model of Rossum, Borking et al. the Identity Protector
corresponds to the management component, when implemented near the

1 Interestingly, the study points out that strong privacy requirements rule out the
following abilities of software agents: mobility, cloning, and the use of third-party
agents.

70 9 Comparing Architectures

user, i.e., in between of the user representation and the service [217, 23]. In
agent systems this corresponds to the integration with or the wrapping of
the user representation [22].

Identity Broker: Alamäki et al. define Identity Brokers as entities which intro-
duce pseudonyms (cf. Trusted Mobile Terminal in Alamäki et al. [2]).

Profile Broker: Alamäki et al. define Profile Brokers as user profile access points,
where user profiles correspond to the attributes of property statements [2].
Profile Brokers can be complemented with Contract Brokers, which veri-
fyably negotiate the mutual requirements of users and services w.r.t. disclo-
sure of user profiles (cf. Trusted Mobile Terminal in Alamäki et al. [2]).

Privacy-enhancing Identity Management: On the one hand, in the real world
people repeatedly need to re-orient and self-organize, and therefore implic-
itly and naturally manage their partial identities or personae. However, ex-
plicitly managing their partial identities in the digital world may overtax
the very same people [133]. Hence, it is useful to assist the user with the
management of his partial identities and the linkability thereof [112]. Iden-
tity management components installed on the user’s personal device (e.g.
personal digital assistant, PDA) assists the user with creating and selecting
his partial identities or identity profiles, which contain property statements
[195, 59].
Instead of locating this functionality on the user device, it can also be located
at one or more third parties, also denoted as infomediaries, which the user
trusts [100, 99, 101]. Some implementations thereof are for example [55, 51]:
Proxymate or Lucent Personalized Web Assistant (LPWA)2, digitalme3 by
Novell, SuperProfile by Lumeria4, iPrivacy5, PrivacyBank6, Persona by Pri-
vaseek7, v-GO by Passlogix8 and the Freedom9 Security and Privacy Suite.
The user’s management component can record each property statement that
it has sent out [135, 25], in order to assists the user with judging his actual
degree of anonymity in the digital world. Property statements to be sent
out are selected, e.g. using P3P [54], by matching the security requirements
and the privacy policy of the given recipient to the privacy requirements
tied to the partial identities defined by the user, while considering the actual
situation in which the user acts [51, 52, 135, 122, 102]. In analogy to the trust
evaluation carried out by the recipients of property statements, the user’s
management component evaluates the trust w.r.t. the recipient’s privacy
policy, before selecting and sending a property statement.

2 http://www.bell-labs.com/project/lpwa
3 http://www.digitalme.com
4 http://www.lumeria.com
5 http://www.iprivacy.com
6 http://www.privacybank.com
7 http://www.privaseek.com
8 http://www.passlogix.com
9 http://www.freedom.net

9.2 Example Architectures for Pseudonymous Authorizations 71

9.2.2 Architectures with Pseudonymizing Certifier

Identity Protector: In the Model of Rossum, Borking et al. the Identity Protec-
tor corresponds to the certifier when implemented as a third party between
the user representation and the service [217, 23]. In agent systems the cer-
tifier corresponds to the nearest trustworthy party that provides privacy
safeguards for an agent [22].

Identity Broker: see Sect. 9.2.1, see also Physical Separation of Identity and
Profile in Alamaki et al. [2].

Authenticator: Alamäki et al. define Authenticators as entities which provide
for the authentication of users. In our model this is part of the verification
boxes (see Fig. 3.3).

Privacy-enhancing Identity Management: PIM leverages anonymous or
pseudonymous credentials (see below).

Anonymity of Sender and/or Recipient: To effectively provide anonymous com-
munication in distributed systems, personally identifying data must be
avoided in all layers of the OSI reference model. Hence, anonymous services in
the application layer require additional services that provide for anonymous
communication. Secure anonymous communication services may also support
conditional anonymity [136]. Usually they correspond to the architecture ver-
sion in Fig. 3.12. As an example, Mix systems distribute the trust, which
the user needs to invest, over several autonomous parties. There are various
implementations of Mix systems: Onion Routing/TOR, Hordes, Freedom
Network, JAP, Babel and Mixmaster-Remailer. Crowds and Cypherpunk-
Remailer are based on similar concepts. Simpler systems, which do not dis-
tribute the necessary trust, are or were for example Anonymizer.com, Anony-
mouse and Anon.penet.fi. Surveys of these technologies have been published
by several authors [73, 80, 10, 199, 104, 105]. Moreover, there are concepts
for unconditional anonymity of the sender (DC networks) or the recipient
(broadcasting) [80, 64], alas they cannot be implemented efficiently in most
of the internetworked environments in practice.

Anonymous Credentials: Anonymous or pseudonymous credentials are intro-
duced as anonymous or pseudonymous property statements in Sect. 8.1.
Various approaches for implementation are published [43, 46, 44, 45, 216,
24, 103, 212, 34, 33, 145]. Pfitzmann et al. gave a simple construction based
on an arbitrary signature system and a communication system providing
sender anonymity [175]. Also a provably secure approach exists [58], alas,
it is not sufficiently efficient for practical use. Anonymous or pseudonymous
credentials can either be used as certificates or as authorizations.10

10 Note, that when using references to such property statements, such as in Fig. 3.9,
observations of all accesses to a given property statements can cumulate to a usage
profile. A first approach to conceal the accesses using private information retrieval
(PIR) has been proposed by Iliev and Smith [115].

72 9 Comparing Architectures

Anonymous Authentication: Verifying anonymous or pseudonymous property
statements comprises anonymously or pseudonymously authenticating the
presenting party (see authentication component in Sect. 3.3). There are sev-
eral publications on authentication technology subject to controlled identity
disclosure [193, 109, 113], or at least with strong mechanisms to discourage
the unauthorized sharing of pseudonyms with other users [110]. Anonymous
authentication is frequently realized using group signatures [36, 130, 129, 20].

Electronic Cash: Fair electronic offline cash usually provides for controlled iden-
tity disclosure subject to technical purpose binding in the case that someone
spends a given electronic coin more than once (commonly denoted as dou-
ble spending) [162, 199, 171, 61, 35, 50, 176, 161]. For several systems this
is realized using group signatures [62, 215, 146], magic ink signatures [121]
or fair blind signatures [209]. However, also anonymous credentials could be
used, encoding the monetary value in the attributes and being valid for being
shown only once (one-show credentials).

ANIDA-Kerberos (1): For the privacy-enhanced intrusion detection system
ANIDA the Kerberos Authentication Server was conceptually11 extended to
use pseudonyms with controlled disclosure subject to organizational purpose
binding [32].

9.2.3 Architectures with Pseudonymizing Authorizer

Identity Protector: see Sect. 9.2.2.
Identity Broker: see Sect. 9.2.2.
Privacy-enhanced Identity Management: see Sect. 9.2.2.
Anonymous Credentials: see Sect. 9.2.2.
Anonymous Authentication: see Sect. 9.2.2.
ANIDA-Kerberos (2): Büschkes and Kesdogan proposed a second approach to

privacy-enhanced intrusion detection, where the Kerberos ticket granting
server is complemented with a multilaterally secure Mix [32]. The result-
ing architecture corresponds to the version in Fig. 3.10.

Unlinkable Serial Transactions: Serial transactions can be authorized in a com-
pletely unlinkable fashion by extending the validity of one-show credentials
at each use for the following transaction only [213].

Anonymous Log-in to Internet Access Points: Based on the fair electronic coins
of Chaum et al. [47] Internet dial-in users can anonymously log-in to dial-in
access points of their Internet providers [40].

Pseudonymous User Accounts: The identifiers of user accounts can be used like
role pseudonyms, if appropriate organizational provisions are made [80, 217]
(see the architecture version in Fig. 3.11, see also Sect. 3.5).

11 The concepts have not been implemented.

9.2 Example Architectures for Pseudonymous Authorizations 73

9.2.4 Architectures with Pseudonymizing Service

The confidentiality of (personal) data processed by a service can be protected
in two ways: controlling access to the data itself (access control approach) or
concealing the data and controlling access to the information that is needed to
neutralize the “cloak” (e.g. encryption or pseudonymization).
The access to and processing of collected personal data can be regulated using
access control with a policy extension to express allowed processing purposes.
According to this idea Fischer-Hübner proposed, formalized and implemented
an access control model, which takes into account the tasks and functions of the
data controller [80]. As a complement to, or instead of access control, personal
data can be protected by means of anonymization or pseudonymization, whereby
the purpose binding of pseudonym disclosure can be enforced cryptographically.
Since this work focuses on pseudonymization, the access control approach is not
considered.
In the following is only personal data considered that has already been collected
by a service in the form of audit data for misuse detection. When considering
service-side anonymization or pseudonymization, it is useful to keep the criteria
summarized in Table 9.1 in mind. To be able to react timely on detected misuse, a
timely pseudonym disclosure is desirable, preferably without the need to involve
third parties. This can be realized using technical purpose binding of pseudonym
disclosure. Also, the solution should be practical und independent from users
and expensive infrastructures. As shown in Table 9.1 these requirements can be
met at the service layer in a cost-efficient way. In the following, approaches for
anonymization or pseudonymization of audit data at the service layer are given.
In Chap. 10, criteria are developed to compare these approaches, and selected
approaches are presented in some more detail.

Identity Protector: In the Model of Rossum, Borking et al. the Identity Protector
corresponds to an audit data pseudonymizer, when implemented between the
service representation and the audit data [217, 23].

Pseudonymizing Audit Data for Intrusion Detection: In her seminal work on In-
trusion Detection and Avoidance (IDA) Fischer-Hübner proposed in 1993 the
concept of misuse detection using pseudonymized audit data. The developed
architecture was only partially implemented [79, 80, 205, 81].
The concept of pseudonymized audit data for misuse detection is used by
Sobirey, showing that the concept is workable with operational intrusion
detection systems. The IDA concepts have been integrated with the fully
working IDS Adaptive Intrusion Detection (AID), thereby heavily modifying
the underlying architecture [151, 204, 80, 205, 206, 203].
Lundin developed and implemented a simple pseudonymizer for the audit
data of an operational firewall, to be able to legally use the pseudonymized
audit data for anomaly detection experiments [143, 142, 141].

74 9 Comparing Architectures

As Lundin, also Rieck was motivated by privacy law to pseudonymize Solaris
BSM audit data [117], which was set aside for anomaly detection experiments
(bsmpseu). Bsmpseu does not support controlled pseudonym disclosure [185].
The approach developed in this book can be used to pseudonymize audit
data for misuse detection in a multilaterally secure way, where the controlled
pseudonym disclosure and pseudonym linkability are subject to technical
purpose binding [88, 15, 92, 91, 90, 87, 86, 85, 84, 83, 13, 14, 12].

Pseudonymizing Web Server Audit Data: Pircher’s Anonymouse web server log
file pseudonymizer retains only top level domain names of web server client
addresses in the web server’s audit data [73]. The most significant parts of
the user address is deleted, such that each top level domain constitutes a
group pseudonym for all user addresses from this domain. Anonymouse does
not support controlled pseudonym disclosure.
The commercial web content filtering system WebWasher can optionally
pseudonymize the generated audit data/reports. The vendor’s marketing
publications merely reveal that organizational purpose binding can be used
for pseudonym disclosure, distributing the required trust on two persons
[221].
The lawyer Jaeger roughly proposed an audit data pseudonymization concept
based on cryptographic one-way hash functions for IP addresses contained
in log files of Internet access points or service providers [119].

Pseudonymizing Internet Traffic Traces: Pang et al. developed and implemented
the pseudonymizer BROanonymize for network audit data (tcpdump packet
traces) to prevent privacy problems when publishing packet traces to the
research community [169]. BROanonymize is integrated with the IDS BRO,
which serves as an advanced parser for locating and rewriting syntactical
elements [170]. Note, that the pseudonymization, alas, is not integral part of
the regular misuse detection function of BRO.
Similar but simpler tools have been implemented by Mishall [156], Peuhkuri
[172] and Xu et al. [223].
None of the described tools support the controlled disclosure of pseudonyms.

9.3 Distinguishing Direct and Indirect Audit Data
Pseudonymization

This book addresses the problem of (1) pseudonymizing audit data (2) for privacy
respecting misuse detection. Pseudonymous audit data (1) can be achieved by
implementing pseudonymization at any of the described layers (management,
certifier, authorizer, service), resulting in different architectures as shown in
Sect. 8.3 and Sect. 8.4. For each of these architectures, a number of example
systems has been given in Sect. 9.2.

9.3 Distinguishing Direct and Indirect Audit Data Pseudonymization 75

Considering all existing systems that are implementing any of these architectures,
we find a large amount of relevant literature. In this book we focus on direct audit
data pseudonymization at the service layer (cf. Sect. 9.2.4). In the following we
therefore distinguish between direct and indirect audit data pseudonymization.
Many architectures can be used to indirectly achieve pseudonymous audit data
by pseudonymizing property statements before they are translated into autho-
rized access of the service (see Sect. 9.2.1, Sect. 9.2.2 and Sect. 9.2.3). These ap-
proaches are denoted as indirect audit data pseudonymization, because personal
data is already pseudonymized before the audit data is generated. The audit data
itself is not modified to provide pseudonymous audit data. These architectures
achieve pseudonymity on a wider scale, where audit data pseudonymization is a
mere by-product. Each of these architectures has its strengths and weaknesses,
but if pseudonymity is required only specifically for audit data, none of these
approaches can take on with direct audit data pseudonymization (see Table 9.1).
Alone for pseudonymous audit data, the cost for establishing an infrastructure
for pseudonymous property statements is disproportionately high. In addition,
for misuse detection purposes (2) the solution should technically enforce pur-
pose binding of pseudonym disclosure. These requirements are only met by au-
dit data pseudonymizers at the service layer (see Sect. 10.1). Direct audit data
pseudonymization or anonymization (see Sect. 9.2.4) is inspected in more detail
in Chap. 10, also w.r.t. the specific requirements of misuse detection.

10

Audit Data Pseudonymization

In Chap. 9 architectures for anonymous and pseudonymous authorizations have
been reviewed. In this Chapter, approaches for direct audit data pseudonymiza-
tion are examined and compared (cf. Sect. 9.3). The task of directly anonymizing
or pseudonymizing audit data makes some specific demands, which are described
in Sect. 10.1. In Sect. 10.2 criteria are given, which allow to compare existing ap-
proaches. Selected approaches are described in Sect. 10.3. Finally, the distinction
between the presented approaches and the approaches developed in this book is
emphasized in Sect. 10.4. In the remainder of this book we denote direct audit
data pseudonymization simply as audit data pseudonymization.

10.1 Specific Requirements of Audit Data
Pseudonymization

While pseudonymizing already collected audit data achieves a comparable effect
in the legal domain as authorizing service users with pseudonymous property
statements [191], for pseudonymization of audit data for misuse detection dif-
ferent requirements need to be accounted for, for the concept, architecture and
implementation. Possible attacks on the interests of both, the user and the SSO
result in specific requirements for the performance and the throughput of audit
data pseudonymization.
In order to avoid the uncontrolled disclosure of identifying information of the
user, the path taken by newly generated audit records should be as short as
possible to be easily protectable. Therefore, audit records should ideally be
pseudonymized on the same device where they are generated, i.e. the device
delivering the service.1 The response time of the service should not be degraded
unreasonably by pseudonymization.
1 When relying on audit data, we are always confronted with the risk of integrity loss

in case an attacker achieves sufficient privilege to manipulate the audit data or the

78 10 Audit Data Pseudonymization

Hence, if audit data is generated on the device that an attacker is trying to gain
control of, to avoid loss of accountability, the pseudonymized audit data should be
transported as quickly as possible to a remote location that securely stores audit
data from possibly various audit components. Therefore, before transportation,
audit data should ideally be locally pseudonymized on the fly. Pseudonymization
should not introduce a significant delay between the generation of an audit record
and its transportation. Specifically, pseudonymization should be able to keep up
with the audit data volume generated on the device. For some kinds of audit data
the volume generated may be huge, e.g. if the audit data documents the sequence
of system calls. As a result, the techniques for audit data pseudonymization
should be chosen such that the performance requirements can be satisfied, i.e.,
the involved computational complexity and delay must be sufficiently low. This
can be achieved as demonstrated in Part IV for the approach developed in Part II
and implemented in Part III.
The above-mentioned performance and security issues need to be considered af-
ter audit data is generated and before it is analyzed w.r.t. misuses. Additionally,
it must be considered, whether misuses detected by analyzing the pseudonymous
audit data call for a timely response, and whether pseudonyms need to be dis-
closed for an appropriate response. When pseudonym disclosure is subject to
technical purpose binding, it can be performed in a timely fashion. The reason
is that due to the simplified control requirements the site security administra-
tor can disclose pseudonyms as soon as granted by the technical purpose binding
(see Sect. 8.4.1). Organizational purpose binding in contrast involves two or more
persons to ensure proper adherence to the defined purpose. The purpose checking
then usually is performed manually, such that pseudonym disclosure is delayed,
if one or more of the involved persons are not immediately available.

10.2 Criteria and Comparison

The approaches for audit data pseudonymization introduced in Sect. 9.2.4 are
in the following compared w.r.t. the pseudonym properties (see Chap. 7) and
the control requirements (see Sect. 8.4). The performance requirements de-
scribed in Sect. 10.1 need to be considered for the approaches where audit data
is pseudonymized on the fly to be analyzed for misuse detection (see IDA in
Sect. 10.3.1, AID in Sect. 10.3.2, and Pseudo/CoRe in Chap. 20). Note, that the

process of its generation. Though countermeasures have already been proposed [197]
they are not yet in wide-spread use. Even in the face of these problems, weakly
protected audit data today is still one very important source of information that is
used to resolve attack situations or to gather early indications thereof. In the same
way in which an attacker can manipulate audit data or its generation, he may also
corrupt the integrity of pseudonyms in pseudonymized audit data to evade later
identification. We argue that we can rely on the pseudonyms generated on a host
under attack as long as we can rely on the audit data generated on that host.

10.2 Criteria and Comparison 79

reviewed approaches readily satisfy the performance requirements. More details
on selected approaches are given in Sect. 10.3.
The approaches are summarized and compared in Table 10.1 w.r.t. to the fol-
lowing criteria:

disclosure support: Does the approach support pseudonym disclosure (see
Sect. 7.2)?
pseudonym mapping: How is the pseudonym mapping implemented (see

Sect. 7.2.5)?
purpose binding: How is the purpose binding of pseudonym disclosure en-

forced (technically, organizationally) (see Sect. 7.2.1 to Sect. 7.2.3)? How
is technical purpose binding safeguarded?

controller of purpose binding: Which entity controls the pseudonym map-
ping (see Sect. 7.2.6)? This entity ensures the purpose binding for pseu-
donym disclosure (for technical purpose binding during pseudonymiza-
tion, and for organizational purpose binding during disclosure).

linkability support: Are the generated pseudonyms linkable? In which contexts
are pseudonyms linkable (see Sect. 7.3)?
additional pseudonym renewals: Are pseudonyms additionally renewed in

contexts other than specified in the field “linkability support”? For ex-
ample, in some approaches all pseudonyms are renewed periodically.

technical purpose binding: Is pseudonym linkability technically bound to
the purpose of processing (see Sect. 7.3)? How is technical purpose bind-
ing safeguarded?

controller of linkability: Which entity controls the (technical purpose bind-
ing of) linkability of the generated pseudonyms (see Sect. 7.3)?

properties of architecture: Which properties exhibits the architecture of the ap-
proach, in particular the method for enforcing dual control for organiza-
tional purpose binding. Does the approach respect the control requirements
discussed in Sect. 8.4?
In this area we identified problems for all previously known approaches that
were originally designed for multilateral security. Either the requirements for
trust and control were not accounted for completely, such that the SSO can
bypass the purpose binding and directly access the pseudonym mapping. Or
an inappropriate method was selected for enforcing dual control for organi-
zational purpose binding, such that a shared and confidentially distributed
decryption key is known after pseudonym disclosure to at least one of the
involved entities.2

2 An appropriate method for multi-party decryption while keeping the decryption key
confidential is threshold cryptography [67].

80 10 Audit Data Pseudonymization

Table 10.1. Summary of the properties of selected approaches for anonymization
or pseudonymization of audit data. ‘

√
’=criterion met, ‘–’=criterion not met,

‘%’=unknown/missing information, ‘(?. . . ?)’=presumption.

approach
(implementation)

disclosure support (7.2) linkability support (7.3)
pseudonym mapping (7.2.5) additional ps.-nym renewals
purpose binding (7.2.1-7.2.3) techn. purpose binding (7.3)
controller of purpose binding controller of linkability

properties of architecture: root cause
Anonymouse [73]
(web server) log

file pseudonymizer
(research

prototype)

–
√ · group pseudonyms

coarsening –
– –
– PPO
unilateral, pseudonymity: pseudonym disclosure not supported

Jaeger [119]
audit data

pseudonymizer
(concept)

–
√ · subject pseudonyms

one-way hash function –
– –
– PPO
unilateral, pseudonymity: pseudonym disclosure not supported

TCPDpriv [156]
network trace
pseudonymizer

(available)

–
√ · subject pseudonyms

table –
– –
– PPO
unilateral, pseudonymity: pseudonym disclosure not supported

Peuhkuri [172]
network trace
pseudonymizer

(research
prototype)

–
√ · subject pseudonyms

symmetric encryption –
– –
– PPO
unilateral, pseudonymity: pseudonym disclosure not supported

Xu, Fan, Ammar
[223] network trace

pseudonymizer
(concept)

–
√ · subject pseudonyms

prefix-preserving encryption –
– –
– PPO
unilateral, pseudonymity: pseudonym disclosure not supported

BROanonymize
[169] network trace

pseudonymizer
(research prototype

available)

–
√ · subject pseudonyms

table, one-way hash function –
– –
– PPO
unilateral, pseudonymity: pseudonym disclosure not supported

10.2 Criteria and Comparison 81

Table 10.1 continued from page 80

approach
(implementation)

disclosure support (7.2) linkability support (7.3)
pseudonym mapping (7.2.5) additional ps.-nym renewals
purpose binding (7.2.1-7.2.3) techn. purpose binding (7.3)
controller of purpose binding controller of linkability

properties of architecture: root cause
BSMpseu [185]

anomaly detection
audit data pseudo-
nymizer (research

prototype available)

–
√ · subject pseudonyms

table, pseudo-random –
– –
– PPO
unilateral, pseudonymity: pseudonym disclosure not supported

Lundin (10.3.3)
anomaly detection

audit data
pseudonymizer

(research prototype)

√ √ · subject pseudonyms
table, coarsening regularly discard mapping
– –
SSO PPO
unilateral, accountability: SSO controls pseudonym mapping

WebWasher [221]
web content filter log
file pseudonymizer

(commercial product
available)

√
% (?

√ · subject pseudonyms?)
% (?encryption?) % (?–?)
organizational (?only once?) % (?–?)
% (?PPO?) % (?PPO?)
% (?unilateral, accountability: dual control can be bypassed?)

IDA (10.3.1)
misuse and anomaly
detection audit data

pseudonymizer
(concept)

√ √ · subject pseudonyms
symmetric encryption regularly change encr. key
organizational (only once) –
PPO PPO

unilateral, accountability: dual control can be bypassed
AID (10.3.2)

misuse detection
audit data

pseudonymizer
(research prototype)

√ √ · subject pseudonyms
symmetric encryption regularly change encr. key
– / organizational –
– / PPO PPO
unilateral, accountability: SSO controls pseudonym mapping

Pseudo/CoRe (20)
misuse detection

audit data pseudo-
nymizer (research

prototype available)

√ √ · role pseudonyms
symmetric encryption time out/insufficient suspicion
techn. + org. · secret sharing –
PPO PPO

multilateral, pseudonymity and accountability

Signature-net-based
approach (26)

(concept)

√ √ · transaction pseudonyms
symmetric encryption misuse scenario incomplete
techn. + org. · secret sharing techn. · one-way hash
PPO PPO

multilateral, pseudonymity and accountability

82 10 Audit Data Pseudonymization

10.3 Exemplary Approaches to Audit Data
Pseudonymization

Some of the related approaches compared in Sect. 10.2 are closer to the fo-
cus of this book than others. In the following, the approaches that directly
pseudonymize audit data for intrusion detection and which also support pseudo-
nym disclosure are described in more detail. As an interesting contrast, also one
approach for indirect audit data pseudonymization is described in Sect. 10.3.4.

10.3.1 IDA Misuse and Anomaly Detection Audit Data
Pseudonymizer

The Intrusion Detection and Avoidance system (IDA) and its fundamental pri-
vacy concepts were developed by Fischer-Hübner [81, 79, 205].
IDA monitors certain system calls concerned with user sessions and clearance
levels as well as object creation, deletion, access and respective permission mod-
ifications. Apart from protecting personal data by conventional mechanisms,
IDA introduced the notion of pseudonymous audit analysis. The kernel refer-
ence monitor generates subject pseudonyms before audit data is passed to the
kernel-integrated analysis component (comprising anomaly detection as well as
misuse detection). The IDA concept incorporates the introduction of pseudo-
nyms wherever subject identifiers are used, particularly for access control. To
restrict pseudonym linkability, i.e. the risk of uncontrolled pseudonym disclo-
sure, relationship pseudonyms derived from combinations of subject and object
identifiers are proposed. These relationship pseudonyms are proposed for access
control only, but not for audit analysis, which in IDA requires linkability across
subjects, i.e. subject pseudonyms. Analysis proceeds on pseudonymized audit
data. The close coupling of the analysis and decision components to the refer-
ence monitor allows enforcement of decisions without the need for automated
reidentification. Obviously, in the IDA approach pseudonymization is deeply en-
tangled with the innards of the operating system, limiting its applicability.
The IDA concept uses symmetric encryption as pseudonym mapping for sub-
ject identifiers in audit data. To limit the linkability of the subject pseudonyms,
pseudonym changes by rekeying after certain time intervals are proposed. Since
IDA can react without requiring automatic pseudonym disclosure, organizational
purpose binding is sufficient, and was designed to be enforced by sharing the
symmetric key between the SSO and the PPO. Prerequisite to this proceeding
is that the symmetric key used in monitored systems is safe against attackers,
i.e. the SSOs must not be able to control the responsible subsystems. Unfortu-
nately, after the first pseudonym disclosure either the SSO, or the PPO knows
the symmetric decryption key, such that organizational purpose binding can be
subverted.

10.3 Exemplary Approaches to Audit Data Pseudonymization 83

10.3.2 AID Misuse Detection Audit Data Pseudonymizer

The privacy-related aspects concerning the Adaptive Intrusion Detection system
(AID) are described by Sobirey et al. [203, 206, 205, 204, 151]. In case of conflict-
ing information in these publications we base our summary on the most recent
information.
The AID implementation comprises distributed event monitoring agents and a
central misuse detection analysis station based on an RTworks expert system.
The Solaris-based analysis station controls and adaptively polls the agents for
Solaris BSM audit data and Windows NT audit data.3

AID uses the Solaris BSM audit component to monitor system calls and se-
lected applications concerned with user sessions, file creation, deletion, accesses
and respective permission modifications, as well as processes and administrative
activity, some of which is non-attributable to any user. The fundamental con-
cepts of pseudonymous audit analysis of IDA and AID are fairly similar, but the
realizations differ in detail. AID introduces subject pseudonyms on monitored
hosts after audit records have been emitted by the Solaris user level process
auditd. Owing to the implementation of AID being based on an off-the-shelf
platform, there is no holistic concept for pseudonyms as in IDA. Monitoring
agents pseudonymize audit records, add supplementary information needed for
misuse analysis and convert the records into an AID-specific format. Misuse
analysis proceeds on pseudonymous audit data in the central station.
Pseudonym disclosure occurs automatically, when the expert system generates an
alarm, or when alarm reports are generated, and before audit trails are archived
in encrypted form. All AID monitoring agents reporting to the same central ana-
lysis station use the same symmetric key to encrypt, i.e. pseudonymize, person-
identifying features. It follows that, if an adversary monitors the key on any AID
host, the adversary is able to reidentify any audit records he monitors. Since AID
uses a confidential channel for audit data transport (SecureRPC), an adversary
is limited to AID host access, the central station being the most desirable target.
Even if the control requirements from Sect. 8.4 for the audit components and
pseudonymizers are met, the architecture of AID violates the control require-
ments for reidentification, which is, but should not be, controlled by the SSO
(cf. Fig. 8.5). Hence, the SSO can disclose pseudonyms irrespective of any good
cause.
Reviewing archived audit records is subject to organizational purpose binding
and requires the SSO to cooperate with the PPO, because the archive encryption
key is shared between the SSO and the PPO. Unfortunately, the organizational
purpose binding of AID is conceptually identical to the one of IDA, such that

3 Note, that the Windows NT processing capabilities of AID were developed under a
grant for the German Army and are therefore classified. Hence, the available publi-
cations do not describe the Windows NT issues.

84 10 Audit Data Pseudonymization

it is also ineffective. However, AID records reidentifications, but there are no
provisions forcing the SSOs to make these records available to the PPOs.
To limit the linkability of the subject pseudonyms, as in IDA, pseudonym changes
by rekeying after irregular time intervals are proposed.

10.3.3 Lundin Anomaly Detection Audit Data Pseudonymizer

Lundin and Jonsson describe an anomaly detection tool that uses statistical
methods to analyze pseudonymous audit data [141, 142, 143].
The tool analyzes log-in event audit records generated by a firewall. Pseudonyms
are introduced in large batches of audit records before exporting the batches
together with the pseudonym mappings for anomaly analysis. This violates the
on-the-fly requirement from Sect. 10.1. Note, that the pseudonymizer, however,
is technically prepared to pseudonymize audit data on the fly.
Some identifying features are pseudonymized: user names, server host names,
client host names as well as free text fields containing user and host names. Other
potentially identifying features not being used as profile discriminators, but sta-
tistically analyzed, such as user activity and time stamps, are not pseudonymized.
The pseudonym mapping is implemented as a table containing sequentially num-
bered place holders denoting the respective feature type (e.g. user0, user1,
. . .). Host names and each domain name part are mapped separately. IP ad-
dresses are mapped to an address in the same address class, allowing to deter-
mine the IP address class of a given pseudonym. Anomaly analysis proceeds on
the pseudonymized audit records.
There are no documented precautions taken protecting the confidentiality of the
pseudonym mapping, neither while in transit nor during analysis. Pseudonym
disclosure is not supported in an automatic way and must be established manu-
ally by the SSO. No purpose binding is enforced for pseudonym disclosure, i.e.,
w.r.t. the SSO the pseudonymization is practically useless.
Several improvements are proposed by Lundin an Jonsson [141, 142]. Based on
the ideas of Fischer-Hübner et al. [205] subject pseudonym linkability could be
limited by re-generating the pseudonym mapping from scratch. Similar to the
idea of Büschkes and Kesdogan [32] (see GRPs in Sect. 10.3.4), it is proposed
to aggregate users into groups to support the SSO’s intuitive manual anomaly
detection capabilities, but also losing the ability to account events to individual
users.

10.3.4 ANIDA Anomaly Detection Audit Data Pseudonymizer

The work on the Aachener Network Intrusion Detection Architecture (ANIDA)
belongs to the category of indirect audit data pseudonymization (see Sect. 9.3).

10.3 Exemplary Approaches to Audit Data Pseudonymization 85

However, it is interesting to consider the implications of such an approach for
the IDS and for the service environment. The privacy aspects concerning the
Windows NT-based ANIDA are described by Büschkes and Kesdogan [32].
In contrast to the other examined systems, ANIDA’s architecture is geared to-
wards analyzing network-based audit data from client-server applications and
underlying protocol stacks. The concept comprises components monitoring all
traffic on the network and the traffic exchanged with selected networked ser-
vices. Hence, it is not sufficient merely to pseudonymize the audit data. The
user’s service accesses must be pseudonymized by the certifier or by the autho-
rizer. Thus, ANIDA fundamentally relies on a generic distributed authentication
and access control infrastructure. As a result, the monitored services need to
support this framework, too. For the purpose of concealing identifying informa-
tion related to a connection, Kerberos was chosen and modified concerning the
tickets, the initial authentication and some protocol steps. An approach to con-
cealing even the fact of a connection taking place is realized by integrating Mixes
with Kerberos [41, 128].
ANIDA introduces pseudonyms either in the authentication service after user
authentication (see certifier in our model for Kerberos in Sect. 3.5), or by one
(or more) trusted Mix(es) that are coupled with the ticket granting server (TGS)
(see authorizer in our model for Kerberos in Sect. 3.5). The pseudonyms are sup-
plemented with group identifiers, confirming group memberships for the purpose
of access control. Kerberos tickets were modified to use these augmented pseu-
donyms, referred to in ANIDA parlance as group reference pseudonyms4 (GRP),
instead of a client principal name. Furthermore, the client’s host network address
is omitted from tickets. GRPs are valid and can be used for several transactions
until the bearing ticket expires. Thus, GRPs can be classified somewhere in
between relationship pseudonyms and transaction pseudonyms. The choice of
appropriate timeouts allows balancing pseudonym linkability, i.e. the risk of un-
controlled pseudonym disclosure, against the overhead involved in making out
new tickets. The ANIDA approach implies group-based and thus coarse-grained
access control5 and entity profiling for intrusion detection.6

Pseudonym disclosure requires the cooperation of the GRP introducer (the Ker-
beros authentication server, i.e. certifier, or the TGS Mix, i.e. authorizer), which
must be independent of SSOs and could be controlled by the PPO. There are

4 This kind of pseudonyms including group associations should not to be mistaken for
group pseudonyms, because individual users can still be distinguished by individual
pseudonyms.

5 While group-based access control is widely in use for the authorization of network
service accesses, it may be too coarse-grained for many system internal authorizations
such as file accesses.

6 Note, that group-based profiling for anomaly detection offers several advantages,
such as requiring cooperation of the group majority to achieve unnoticed profile
drift defining malicious behavior as acceptable. This concept emerged with the IDS
NIDES [144].

86 10 Audit Data Pseudonymization

no monitoring components internal to client hosts and the GRP introducer, and
SSOs should not be able to observe activity on client hosts and on the GRP
introducer.

10.4 Distinction from Existing Approaches

In the following, the results from the comparison in Sect. 10.2 and from the more
detailed descriptions in Sect. 10.3 are summarized and related to the approach
developed in this book.
In this book we provide a secure and practical approach for audit data
pseudonymization for misuse detection, such that:

1. person identifying data is concealed by pseudonyms in the audit data,
2. the linkability of pseudonyms respects the requirements of audit data ana-

lysis, such that

a) the pseudonymized audit data can still be analyzed for misuse activity,
such that legal restrictions w.r.t. person-identifying data in audit data
do not apply or are relaxed,

b) either as many pseudonyms are linkable as original features, or
c) pseudonym linkability is subject to technical purpose binding, such that

pseudonyms are linkable only where required for audit data analysis,

3. misuse activity detected in the pseudonymized audit data can be made ac-
countable by disclosing the respective pseudonyms,

4. pseudonym disclosure is subject to purpose binding, most preferably techni-
cal purpose binding, such that

a) pseudonyms can be disclosed to the SSO in a timely fashion,
b) only those pseudonyms can be disclosed, which are involved in a sufficient

misuse suspicion, i.e., a fair balance of anonymity and accountability is
achieved in terms of multilateral security,

5. organizational purpose binding, if used, is properly enforced using appropri-
ate cryptographic primitives,

6. the pseudonym mapping is appropriately protected, also as a result of strict
adherence to design criteria w.r.t. control requirements, and

7. additional cost for the deployment of a complex infrastructure is avoided.

Existing approaches for direct audit data pseudonymization already satisfy 1,
2a, 2b, 3 and 7 and commonly violate 2c, 4, 5 and/or 6. Existing approaches for

10.4 Distinction from Existing Approaches 87

indirect audit data pseudonymization, as the ANIDA approach, generally do not
satisfy 4 and 7.
The most distinguishing advantages of the set-based approach, design and im-
plementation described in Part II and Part III are:

• restricting pseudonym linkability to different misuse suspicions (2a and im-
proving on 2b),

• enforcing technical purpose binding for pseudonym disclosure w.r.t. set-based
models of misuse scenarios (4),

• integrating organizational purpose binding of pseudonym disclosure in a se-
cure way (5), and

• consequently respecting the control requirements (6).

The set-based approach from Part II is further refined in Part V, yielding the
following additional advantages:

• enforcing technical purpose binding for pseudonym linkability w.r.t. fine-
grained models of misuse scenarios (2a and 2c), and

• enforcing technical purpose binding for pseudonym disclosure w.r.t. fine-
grained models of misuse scenarios (4).

Part II

Set-based Approach

This Part presents an approach for pseudonymizing audit data, where the pseu-
donym disclosure is subject to technical purpose binding. In Chap. 11 the as-
sumptions, requirements and the trust model of the approach are derived from
Part I. Chapter 12 describes how conditions for the purpose binding of the con-
trolled pseudonym disclosure can be modeled, whereas Chap. 13 shows how mod-
eled disclosure conditions can be enforced by cryptographic means. A new prob-
lem emerging due to the way we apply a certain cryptographic primitive is de-
scribed, analyzed and solved in Chap. 14. Chapter 15 ties together the solutions
from the previous Chapters and informally gives an algorithm that implements
the approach. Eventually, Chap. 16 presents extensions to the approach, some of
which will be used in Part III. Part III shows how the approach from this Part
can be applied in practice.

11

Requirements, Assumptions and Trust Model

The objective of the various possible architectures in the model from Sect. 8.4
is achieving pseudonymity for the activity of users of a service towards the site
security officer (SSO) of the service provider. Pseudonymization can be used to
make inferences on the pseudonymized data difficult or even impractical. How-
ever, we cannot avoid inferences that take into account additional information
outside the scope of pseudonymization. At the same time the SSO shall be able
to detect certain scenarios of activity, and he shall be able to establish account-
ability for these scenarios, i.e. disclose the pseudonyms of users who are causing
these scenarios.
In the architectural model the audit component of the service observes the user
activity while the users access the service. The audit component generates audit
records that describe the observed activity. The SSO can observe the user activity
only by inspecting and analyzing the audit data that the audit component of
the service generates. We assume that the audit data correctly and completely
describes the activity that is relevant for the SSO. If it cannot be avoided that
the SSO can observe the user activity also through other channels, a separate
pseudonymization architecture needs to be considered for each of these channels
(see Sect. 8.2). These are outside the scope of this book.
The analysis of the audit data is supposed to be automated and it results in
a report, if a scenario has been detected. The report about the detected sce-
nario contains the audit records describing the activity, which constitutes the
relevant context of the scenario. The report is sent to the response unit, which
can reidentify audit records in the report by disclosing the pseudonyms. After
reidentification the response unit may inform the SSO (see Sect. 8.3).
In Sect. 8.4 three basic architectures are presented, which achieve user
pseudonymity (see Fig. 8.3, Fig. 8.4 and Fig. 8.5). It is assumed that the SSO’s
main interest in accountability is conflicting with the users’ interest in anonymity
or pseudonymity, and vice versa. According to the rationale in Sect. 8.4 there-
fore both the SSO and the users are exempted from controlling components that

92 11 Requirements, Assumptions and Trust Model

enforce the interests pseudonymity and accountability. Instead, a third party en-
joys the trust of the users and of the SSO for the enforcement of a fair balance
of their conflicting interests. The third party may be the organization’s privacy
protection official (PPO). The control and trust requirements for our approach
follow the same rationale.
In Sect. 8.4.1 is shown, how the technical purpose binding of pseudonym disclo-
sure simplifies the control requirements. Since pseudonyms can only be disclosed,
if the conditions induced by the disclosure purpose are met, the reidentification
can safely be controlled by the SSO (see Fig. 8.6b). This enables the SSO to
disclose pseudonyms without any delay if it is necessary, i.e. independently from
any third parties.
Our solution shall satisfy the following requirements. We want to provide a prac-
tical solution that allows for multilateral security with technical purpose binding
of pseudonym disclosure. As the comparison of the architectures in Sect. 9.1 has
shown, these requirements can be met in a cost-efficient way by pseudonymiz-
ing the audit data right after its generation (see Table 9.1). Consequently, our
solution provides pseudonymization of audit data as well as disclosure of the
pseudonyms in audit data, subject to technical purpose binding.
With these basic models and requirements from Part I in mind, we describe the
basic structure of our solution in the following. The description follows the flow
of identifying features and pseudonyms in Fig. 11.1, while elaborating on certain
issues, where necessary.

user

analysis
site security

officer

audit component

service

pseudonymizer reidentifier

Fig. 11.1. Trust and control in the architectural model of our approach

In Fig. 11.1 we focus on the components that implement our approach as de-
scribed in this Part. A user accesses a service that observes the user activity by
means of an audit component. The audit component generates audit records that
describe the observed activity. The audit data is pseudonymized by a pseudony-
mizer, which replaces identifying features in audit records with pseudonyms and
which generates the pseudonym mapping allowing pseudonym disclosure later
on.
Each fat grey frame illustrates an area where the security interest of an entity is
enforced and where entities with conflicting interests may not exert any control.
Both, the audit component and the pseudonymizer shall enforce the conflicting
interests of the user and the SSO in pseudonymity (see the dark grey frame in

11 Requirements, Assumptions and Trust Model 93

Fig. 11.1) and accountability (see the left hand bright grey frame in Fig. 11.1),
respectively. That is, the dark boxes in the multi-framed areas in Fig. 11.1 to-
gether enforce multilateral security. Consequently both, the user and the SSO
may not control the audit component and the pseudonymizer. Instead, they are
controlled by the PPO, who should be able to verify the proper functionality
and configuration of the pseudonymizer and the audit component.1 The SSO
controls the application-specific analysis component and the reidentifier.
The pseudonymity of the audit data and the properties of the pseudonyms de-
pend on the behavior of the audit component as well as of the pseudonymizer.
Both components can be configured with a priori knowledge, which must ex-
press a fair consensus between the interest in pseudonymity and the interest in
accountability. We roughly sketch a process that is carried out in the real world,
and which is suitable to reach such a consensus.
First, the PPO – preferably in cooperation with further advocates of the user
interests, e.g. the works or staff council – defines, which features in audit data
need to be pseudonymized. Second, the SSO – possibly in cooperation with
a lawyer – specifies, which of the pseudonyms of these features he needs to
be able to disclose for what purposes. The SSO elaborates, which conditions
(as induced by each purpose) must be met, such that pseudonym disclosure is
justified. When the requirements reflecting the conflicting interests are defined,
they should be openly discussed and refined, until a fair consensus is reached.
Finally, the consensus is translated to the languages that the pseudonymizer and
the audit component understand. The PPO ensures that the pseudonymizer and
the audit components are configured accordingly. Then, the consensus is enforced
in the digital world, given that the required control conditions are not violated.
After its pseudonymization, the audit data together with additional data needed
for pseudonym disclosure is transmitted to the SSO to be analyzed. The solid
arrows in Fig. 11.1 illustrate the flow of identifying features, whereas the dashed
arrows in Fig. 11.1 show the flow of pseudonymized features. Additionally, up-
dates to the pseudonym mapping are transmitted to the reidentifier, signified by
the dotted arrows in Fig. 11.1. The generation of the additional data for pseudo-
nym disclosure and of the pseudonym mapping is designed such that attacks on
pseudonymity are resisted as soon as this data leaves the pseudonymizer. Note,
that we introduce an extension in Sect. 16.3, such that the separate transmission
of the pseudonym mapping is not necessary.
According to the given application, the pseudonymous audit data is analyzed for
occurrences of certain scenarios of activity. We define our approach in a general
way, such that it is usable for various applications. The examples, though, center
around a specific application: the detection of misuse scenarios. However, this

1 In practice, widely used operating systems do not support this kind of integrity
requirement in a straightforward way. If the service runs on a Unix system, the PPO
needs exclusive root and physical access to ensure that the pseudonymizer and the
audit component work as desired.

94 11 Requirements, Assumptions and Trust Model

should not lead the reader astray. The definitions nevertheless are of a general
nature.
To detect a scenario we assume that in the given application the analysis uses
some kind of rule-based system, e.g. an expert system. For more complex detec-
tion tasks the analysis requires the correlation of features from several events in
audit records. The pseudonyms we generate shall still support that kind of cor-
relation. For rule-based systems the correlation works by comparing features in
events, that is the pseudonyms of these features need to be linkable by content.
The linkability requirements of the analysis are specific to the given application.
For a general approach that works for arbitrary applications we cannot a priori
specify the linkability property for the pseudonyms to be generated.2 Another
assumption concerns the format of the events in the audit data. We assume that
the format expected by the analysis is rigid, such that we cannot modify the
syntactical format of the embedded features. Also, we assume that we cannot
delete or insert features in events without interfering with the given analysis.
Consequently, the format and the content-linkability of the pseudonyms are not
part of the set-based approach. In Part III we describe the design an implemen-
tation of the set-based approach for audit data, but still for general applications.
There, the format and linkability can be freely adjusted by the users to fit the
application at hand. In Part V we focus specifically on intrusion detection sys-
tems (IDS) as an application and give concise rules how content-linkability of
pseudonyms can be tailored to the given misuse scenario models of an IDS.
If, and only if a scenario has been detected by the analysis, the pseudonyms in the
audit data from the corresponding report can be disclosed by the reidentifier.3
After reidentification, the report audit records contain events with the original
identifying features and can be further processed by the SSO.
Additionally, we have to meet the specific requirements for audit data
pseudonymization (see Sect. 10.1). First, audit records should be pseudonymized
on the same device on which they are generated. Second, pseudonymization
should also occur on the fly, such that the pseudonymized audit data can be trans-
ported as soon as possible to a secure remote location. Third, pseudonymization
should not impair the performance and response time of the service. Therefore,
pseudonymization should employ techniques with a low computational complex-
ity and a low delay. The cryptographic schemes we choose in this Part and the
design we develop in Part III satisfy these requirements, as validated in Part IV.

2 To be able to determine the linkability requirements of an application one needs to
know exactly what audit data processing the application performs (see Part V).

3 In annex C the Common Criteria [53] provide for the application of the Privacy class
(FPR) to FAU_GEN.2. The Privacy class FPR contains the families Anonymity FPR_ANO,
Pseudonymity FPR_PSE, Unlinkability FPR_UNL and Unobservability FPR_UNO. The
Pseudonymity family (FPR_PSE) provides accountability and FPR_PSE.2 offers re-
versible pseudonyms liable to specified reidentification conditions. Basically, our ap-
proach is implementing FPR_PSE.2 for FAU_GEN.2.

11 Requirements, Assumptions and Trust Model 95

Given the described precautions, we may assume that the audit data and the em-
bedded pseudonyms are still valid when being analyzed. Compensating for this
assumption is in principle possible using more elaborate cryptographic primi-
tives and protocols (see Sect. 22.2). Unfortunately, in practice such mechanisms
do not satisfy the audit data pseudonymization requirements w.r.t. time and
computational complexity (see Sect. 10.1 and Sect. 22.3).

12

Modeling Conditions
for Technical Purpose Binding
of Controlled Pseudonym Disclosure

In Part I we introduced an approach to conditional anonymity based on pseu-
donyms (see Sect. 6.1). The disclosure of pseudonyms should be subject to or-
ganizational and technical purpose binding (see Sect. 7.2). In the following, an
approach to technical purpose binding of pseudonym disclosure is developed.
More specifically, pseudonym disclosure is subject to certain technically enforced
conditions, where the technical enforcement of the conditions is implemented by
cryptographic means.
Using this approach, activity of entities appears under pseudonyms in the audit
data, until a legal purpose requires pseudonym disclosure (see Sect. 6.1.3). Pre-
condition to the purpose coming into effect is that certain conditions are met,
where the conditions are specific for the application under consideration and can
be described as the transgression of an application-specific threshold.
In Sect. 12.1 a model for the disclosure conditions is developed. The model is
based on events, which are defined in Sect. 12.1.1. Section 12.2 shows how the
events and models can be described by certain a priori knowledge and Sect. 12.3
describes how this knowledge is effectively applied to events.

12.1 Set-based Model of Disclosure Conditions

Our approach assumes that in a given application the entities normally appear
under pseudonyms in the audit data that the SSO can see. The exception from
the normal situation occurs when the result(s) of certain activity of an entity
warrant the disclosure of the entity’s pseudonym(s). Such an exception is denoted
as a disclosure scenario.
A disclosure scenario usually is detected based on the activity that is observable
in the application. A disclosure context describes the set of weighted observa-
tions of activity that is potentially related to a disclosure scenario, where the

98 12 Modeling Conditions for Technical Purpose Binding

observation weight represents the contribution of a given observation w.r.t. the
disclosure context and of the corresponding activity w.r.t. the disclosure sce-
nario. The sum of the weights of observations in a given disclosure context is
a measure for the activity level of the disclosure context. Note, that we assume
here that every (repeated) occurrence of a given observation raises the activity
level by its observation weight. In Sect. 16.4 we give an extension that removes
this assumption. Also note, that here the weight may for different observations
be either positive or negative. Though we firstly restrict the approach to positive
weights in Sect. 12.2, we relax this restriction in Sect. 16.5.
With each disclosure context is associated an application-specific threshold. The
transgression of the threshold models the disclosure condition of the disclosure
context. If in a given disclosure context the activity level is lower than the thresh-
old, then the disclosure condition is not met. Conversely, if the activity level ex-
ceeds the threshold, i.e. activity level ≥ threshold, then the disclosure condition
is met.
Summarizing, the disclosure of pseudonyms in observations contributing to a
given disclosure context shall be feasible if and only if the respective application-
specific disclosure condition is met. If this requirement holds and if the corre-
sponding disclosure scenario has been correctly modeled by the disclosure context
and condition, then pseudonym disclosure is bound to those purposes that are
tied to the occurrence of the disclosure scenario as precondition to requiring
accountability.
This set-based definition of disclosure context is not always sufficient to model
disclosure scenarios in arbitrary applications. We give some extensions in
Chap. 16 and refine the approach in Part V for specific applications based on
Petri-Nets.

12.1.1 Observations

An activity observation in the sense of the above definition is a feature of an
abstract event of a certain type which is symptomatic to be generated during the
occurrence of a given disclosure scenario. Events generated in real applications
have various formats, but they can be abstracted to the definition given below,
capturing the properties that are relevant for our approach. In the remainder
of Part II we mean abstract events when we talk about events. Events can be
wrapped in audit records. If an audit record does not provide additional data, it
is just the container of the event. An ordered set of audit records is denoted as
audit data.
An event exhibits an event designator allowing event-discrimination (see frame
1 in Fig. 12.1), an event type specifying the number and types of the included
features (see frame 2 in Fig. 12.1), and as many pairs of 〈feature designator,
feature〉 as specified by the event type (see frames 3–8 in Fig. 12.1). A feature
designator specifies the meaning and the format of the corresponding feature.

12.1 Set-based Model of Disclosure Conditions 99

1066815145 1, loginfail 2,〈 usr 3, deedee 4〉,〈 acct 5, root 6〉,〈 term 7, pts/14 8〉

Fig. 12.1. An example abstract event

The meaning usually is the role that an entity assumes in the activity described
by the event, whereas the feature is the actual name or value of the entity. The
loose concept of role here includes, but is not limited to subjects and objects of
the activity.
The meaning of the example event in Fig. 12.1 could be described as follows.
The event designator in frame 1 is the time stamp of the event in seconds since
“00:00:00 1970-01-01 UTC”, allowing discrimination of identical events that oc-
curred at distinct times. The event type loginfail in frame 2 signifies that a certain
user failed to log into a certain account from a certain terminal. This event type
also specifies that three pairs of 〈feature designator, feature〉 describe the event
using the feature designators usr, acct and term. The feature designator usr in
frame 3 signifies that the format of the feature deedee in frame 4 is that of
a user account name and that the role of the entity described by the feature
deedee is that of the user account from which the log-in has been unsuccessfully
attempted. The feature designator acct in frame 5 signifies that the format of
the feature root in frame 6 is that of a user account name and that the role of
the entity described by the feature root is that of the user account to which the
log-in has been unsuccessfully attempted. The feature designator term in frame
7 signifies that the format of the feature pts/14 in frame 8 is that of a terminal
identifier and that the role of the entity described by the feature pts/14 is that
of the terminal being used by the entity described by usr to attempt the log-in.
We define a feature type as the combination of an event type and a feature
designator, hence a feature can be considered to be an instance of a feature type.
As a direct result, the feature type allows to differentiate features, even if they
describe the same entity, but in the context of different events. This is important,
because a given feature may identify a person in the context of some events, while
it would not in others.
Hence, differentiated by feature type, we pseudonymize features that allow in-
direct identification of persons, but may ignore them in other events. Certainly
we have to pseudonymize directly identifying features in all events. Finally, fea-
tures that do not identify persons do not need to be pseudonymized and can be
ignored. Therefore, in the following where using the term feature type we denote
exclusively those, whose respective features identify persons, i.e. such a feature
may in the following be consequently denoted as an identity.

100 12 Modeling Conditions for Technical Purpose Binding

12.2 A Priori Knowledge

For both, the pseudonymization and the pseudonym disclosure certain a priori
knowledge is required. While processing events, the pseudonymizer shall be able
to determine the feature type of each feature, associate a given feature type with
the relevant disclosure contexts, and prioritize feature types within disclosure
contexts. According to the given application, the a priori knowledge specifies,
which feature types occur in which disclosure contexts and the weight of their
contribution w.r.t. the activity level of the disclosure context. The same knowl-
edge must be available to reidentifiers.
In a nutshell, the a priori knowledge provides:

• the features types that need to be pseudonymized, as initially defined by the
PPO, particularly the corresponding event types and feature designators, and

• the disclosure contexts and conditions, as initially defined by the SSO, par-
ticularly the associations between feature types and disclosure contexts, as
well as the respective weights of feature types and thresholds of disclosure
contexts.

As described in Chap. 11 the a priori knowledge is the result of a constructive dis-
course between the PPO and the SSO. Based on our assumption from Chap. 11
the initial requirements of both sides have been considered and a fair and prac-
tical consensus has been negotiated. The fairness and practicability represented
by the a priori knowledge are functions of this political process, which has been
settled in the real world and which is beyond the control of technical solutions.
The basic idea of our approach is enabling pseudonym disclosure, if an entity has
caused an activity level of a given disclosure context to exceed the corresponding
threshold. Since an application may require pseudonym disclosure under several
different disclosure contexts, we allow for the grouping of feature types, and for
the assignment of a separate threshold tg to each Ig representing a disclosure
context. This association is expressed as pairs 〈Ig, tg〉.
It may be the case that the feature types of a given event contribute to the activ-
ity level of different disclosure contexts with a distinct weight. Thus, we assign
a weight1 wf,g ∈ N \ 0 to each feature type f associated with Ig, representing
f ’s contribution to the activity level of Ig. The knowledge about associations be-
tween feature types and disclosure contexts is represented by triplets 〈f, Ig, wf,g〉.
Each triplet expands to a quadruple:

〈event type, feature designator, Ig, wf,g〉
Note, that this representation has the following properties:

1 The restriction to strictly positive weights is relaxed by an extension described in
Sect. 16.5.

12.3 Decision Structures 101

• A given feature type can be associated with more than one disclosure context,
with a different weight for each, i.e. the corresponding quadruples contain the
same event type and feature designator, but different disclosure contexts and
possibly different weights.

• Different feature types may have an identical instance, representing an iden-
tity. In other words, there may be multiple occurrences of the identity of a
given entity in different feature types of one or more events. We thus can
associate a given entity with different disclosure contexts, even if the corre-
sponding quadruples do not exhibit identical pairs of event type and feature
designator.

In a nutshell, a given identity may be associated with several disclosure contexts.
Nevertheless, due to the properties of the pseudonym generation described in the
following Chapters, the contributions of the identity to the activity levels of the
disclosure contexts are not transferable from one disclosure context I1 to another
disclosure context I2 in order to prematurely satisfy the disclosure condition of
I2, or vice versa.2

12.3 Decision Structures

The tuples defined above form a decision tree such as in Fig. 12.2 with a virtual
root connected to all specified event types. Each event type is connected to all
feature designators contained in tuples with that event type. Likewise, all pairs
of 〈Ig, wf,g〉 are connected to the respective feature designator.
For an incoming event the pseudonymizer determines in the decision tree the
matching event type. Then, the feature types are determined according to the
feature designators in the subtree of the current event type.
For each feature designator the pseudonymizer determines the respective feature,
i.e. identity. For each identity it iterates over all disclosure contexts represented
by Ig that are connected to the corresponding feature designator. It retrieves
the respective data structure denoted by Ig and checks, whether the identity is
already a member of Ig. In case it is not, a pseudonym mapping entry for the
identity is allocated and initialized in Ig.
Finally, for each Ig and according to wf,g, additional data is generated, which is
required to disclose the pseudonym. The pseudonymizer replaces the identity in
the event with an appropriate pseudonym and links the additional data to the
pseudonym in the event.

2 However note, that a given identity may with a negligible probability be associated
with the same polynomial in different disclosure contexts. Moreover, the sample
points of a given polynomial in one disclosure context may with a negligible proba-
bility be useful to interpolate a different polynomial in another disclosure context.

102 12 Modeling Conditions for Technical Purpose Binding

virtual root

event type

feature designator
feature type f

〈Ig, wf,g〉

Fig. 12.2. Decision tree used for assigning disclosure contexts Ig and weights wf,g to
feature types f

Similarly proceeding, reidentifiers can relate incoming pseudonyms and addi-
tional data with their respective disclosure contexts. This, however, is not suf-
ficient if a pseudonym is associated with more than one disclosure context, be-
cause for each disclosure context Ig additional data has been generated by the
pseudonymizer. The additional data needs to be associated properly with the
corresponding Ig. Therefore, the identifier of Ig is provided together with the
additional data by the pseudonymizer. As a result, the reidentifier can directly
locate Ig and does not need to use the decision tree to relate pseudonyms and
additional data with their respective disclosure contexts.

13

Cryptographic Enforcement
of Disclosure Conditions

The set-based approach is not concerned with the selection of appropriate pseu-
donyms, due to reasons given in Chap. 11. Rather, our approach is concerned
with the protection of the pseudonym mapping, which enables the controlled
disclosure of the pseudonyms. In this Chapter we show how we can use crypto-
graphic primitives to technically enforce the disclosure conditions of disclosure
contexts as defined in Sect. 12.1.
Section 13.1 describes how the choice of pseudonyms can be decoupled from
the mechanism for controlled pseudonym disclosure. Section 13.2 explains how
we cryptographically protect the pseudonym mapping against adversaries. Sec-
tion 13.3 shows how the cryptographic protection of pseudonym mapping entries
can be neutralized in a secure way by using threshold schemes for secret sharing.
Also, a suitable scheme is selected and Sect. 13.4 describes how it is applied in
our approach. Due to the parallel use of several secret sharing schemes a problem
emerges, which is defined, studied and solved in Chap. 14.
As the assignment of identities to different disclosure contexts Ig and respective
weights wf,g is just a matter of using the decision structures (see Sect. 12.3), for
the forthcoming Sections we focus on a given Ig and omit the indexes of I and
w wherever useful.

13.1 Pseudonymity-layer Data

According to the assumptions in Chap. 11, legacy applications may not toler-
ate modifications of the audit data format. Also, for each identity, i.e. feature,
that needs to be replaced by a pseudonym, the corresponding feature designator
signifies the format and the meaning (see Sect. 12.1.1). Any feature of a given
event may be an input of the given application, which relies on the format and
meaning of the feature. The meaning of the feature includes the linkability prop-
erty of the feature. In order not to impair the given application, a pseudonym

104 13 Cryptographic Enforcement of Disclosure Conditions

has to retain the original format and at least the linkability property of the
identity it replaces.1 Thus, on the one hand the choice of the bit strings that
represent pseudonyms is constrained by the format and meaning of the identi-
ties. Cryptographic security of pseudonym disclosure on the other hand hinges
on the pseudo-randomness of certain parameters. Consequently, here it is not a
good idea to use cryptographic parameters directly as pseudonyms. Moreover,
our approach for pseudonym disclosure should be independent of the given ap-
plication and its linkability requirements. Since linkability requirements directly
influence the pseudonyms that can be used in the audit data, we choose to decou-
ple the pseudonyms from the mechanism for controlled pseudonym disclosure.
As a result, pseudonyms can be chosen arbitrarily (see (2) in Sect. 20.3).
We introduce a further layer of data in addition to the audit data. This data layer
in the following is denoted as the pseudonymity-layer and holds the additional
data we need to provide for controlled pseudonym disclosure. The data stream in
the pseudonymity-layer can be generated on demand and in parallel to the audit
data stream, which resides in the application-layer. The pseudonyms reside in
the application-layer, retaining format and meaning of the events. The linkage
between a given pseudonym in the application-layer and the corresponding data
in the pseudonymity-layer can be established syntactically (see Sect. 19.2.1).
The pseudonymity-layer and the application-layer conceptually are two sepa-
rate streams of interrelated data. In practice, both streams will be multiplexed
suitably, and the pseudonymity-layer data will be wrapped, such that it can be
embedded in the application-layer data stream (see Sect. 19.2), i.e. the dashed
arrows in Fig. 11.1 signify the flow of the application-layer data and of the
pseudonymity-layer data.

13.2 Protecting Identities in the Pseudonym Mapping

The purpose of a pseudonym mapping is to enable the disclosure of pseudonyms
in a controlled way. It is a structure that maps a given pseudonym to the iden-
tity that has been replaced by the pseudonym (see Sect. 7.2.5). We do not use
this direct pseudonym-to-identity mapping in our approach due to the following
rationale.
Since our approach provides technical purpose binding of the controlled pseudo-
nym disclosure, the party performing the pseudonym disclosure is considered to
be a potential adversary with regard to the pseudonymity of events. This party is
also assumed to have complete control over the machine performing pseudonym
disclosure (see Chap. 11). Therefore, we cannot rely on the operating system of
1 Linkability is sufficiently retained when pseudonyms are linkable, where the original

features are linkable. However, linkability can be further reduced when considering
the actual requirements of the application for linkability. This issue is examined in
detail in Part V.

13.3 Protecting Secrets in the Pseudonymity-layer 105

this machine to protect the confidentiality of the pseudonym mapping, i.e. we
cannot provide the identities in the clear.
Therefore, we pseudo-randomly choose a secret si unique w.r.t. I for each dis-
tinct identity idi associated with I. The secret si cryptographically protects the
corresponding identity idi in the pseudonym mapping. Naturally, also the secrets
cannot be stored in the clear in the pseudonym mapping.
In the basic version each entry ei of the pseudonym mapping comprises a verifier-
cryptogram pair ei = 〈vi, ci〉. The verifiers vi = H(si) are just the value of a
secure one-way hash function H() applied to the secret si, i.e. a message digest.2
The secrets are provided in the pseudonymity-layer in a protected form (see
Sect. 13.3). The pseudonym corresponding to a secret can be located using the
linkage between the pseudonymity-layer and the application-layer.
Given a tentative secret s∗, the corresponding pseudonym mapping entry can be
located by matching H(s∗) against the verifiers in the pseudonym mapping. If
an entry ei with H(s∗) = vi has been located, the cryptogram ci = E(k̃i, idi)
can be decrypted to yield the original identity idi. This works, because we use
the secret si as the decryption key ki, matching the encryption key k̃i, pseudo-
randomly chosen and unique w.r.t. I. The uniqueness requirement for the secrets
discourages the decryption of idj , j �= i for a given si. Note, that the keys are
not chosen independently, which slightly reduces the search space for an attacker
who already knows several secrets. This effect can be compensated for by using a
larger P , which is the security parameter of the cryptographic primitives we use
in Sect. 13.3. Also note, that our construction allows for the use of asymmetric as
well as symmetric cryptosystems. In Part III we use a symmetric cryptosystem
due to the lower computational complexity, in order to meet the performance
requirement from Chap. 11.
If the pseudonymizer has added new entries to the pseudonym mapping, the
mapping needs to be made available to the reidentifiers as soon as possible
(see the dotted arrow in Fig. 11.1). Note, that the pseudonym mapping here
is provided separately from the application-layer and pseudonymity-layer data.
In Sect. 16.3 we present an extension that embeds the pseudonym mapping in
the pseudonymity-layer.
Section 13.3 and Sect. 13.4 describe how the secrets are protected in the
pseudonymity-layer while the disclosure condition is not satisfied.

13.3 Protecting Secrets in the Pseudonymity-layer

The fundamental idea of our approach to protect the secrets in the pseudonymity-
layer, is to cryptographically split a given secret si that protects the pseudonym
2 Note, that we do not use pairs 〈ni, ci〉 of pseudonyms and cryptograms, because

we intend to keep pseudonym disclosure, and hence also the pseudonym mapping,
decoupled from the choice of pseudonyms.

106 13 Cryptographic Enforcement of Disclosure Conditions

mapping entry ei into as many shares as are needed to pseudonymize events con-
taining the corresponding identity idi, at maximum P −1 shares (see Sect. A.1).
The shares of si shall have the property that given any t shares, but not less, it is
feasible to recover si. Having recovered si from the shares in the pseudonymity-
layer, the corresponding ci can be located and decrypted in the pseudonym map-
ping (see Sect. 13.2). In such a way the identity that has been replaced by the
pseudonym(s) in the application-layer can be revealed. These requirements can
be met using threshold schemes for cryptographic secret sharing (see Appx. A).
For these purposes we exploit Shamir’s threshold scheme for secret sharing [200]
(see Sect. A.1) with some modifications. This scheme has some desirable prop-
erties: it does not rely on any unproven assumptions, and it is ideal as well as
perfect [153]. In our approach an ideal scheme generates shares of the same size
as the secrets and is thus more efficient w.r.t. to time and space than non-ideal
schemes. Arbitrary sets of t − 1 or less shares from perfect schemes do not pro-
vide any information about the protected secret. The shares generated by perfect
schemes with the same threshold do not themselves indicate from which scheme
they originate. As a result, in our approach two given shares do not reveal if they
are related to the same identity or to two different identities. Shamir’s scheme
is particularly suitable for our approach due to the possibility to compute new
shares independently from previously issued shares, and due to the possibility
to prioritize entities by issuing an appropriate number of shares. Consequently,
we can compute virtually as many shares and thus pseudonymize virtually as
many events as we desire, provided P is chosen appropriately. The possibility for
prioritization supports the notion of weights we introduced in Sect. 12.2. Müller
considered further secret sharing schemes as candidates for our approach [159].
From the schemes considered by Müller, only Shamir’s threshold scheme exhibits
all of the above properties.

13.4 Adapted Application of Shamir’s Threshold Scheme

Owing to different conditions of deployment of Shamir’s threshold scheme for se-
cret sharing, we make some modifications with regard to its application. First, in
our approach we don’t have a group of participants, of which each confidentially
receives and stores one or more shares, until t of them pool their shares for secret
recovery. Instead, we have one or more reidentifiers, each of them receiving all
shares. A reidentifier is always in the position to recover the secret, which protects
the pseudonym mapping entry for the identity idi associated with a polynomial
pi(x), as soon as it received t distinct shares from the pseudonymity-layer. Ad-
ditionally, since from the point of view of the pseudonymizer all reidentifiers are
potential pseudonymity adversaries, the confidentiality requirements regarding
shares cease to apply.
While in conventional applications of secret sharing schemes it is feasible to
determine the number of shares preliminarily to be issued, the same is impractical

13.4 Adapted Application of Shamir’s Threshold Scheme 107

in our approach, since it is unknown which identities in the near future will
require pseudonym generation. We thus take a stepwise approach to the choice
of x-coordinates and to share generation, and we distribute pi(x) paired with
its respective x. We have to preclude content-linkability w.r.t. the x-coordinates
of shares within a disclosure context. If we chose the same x-coordinate for
shares of different identities being members of the same disclosure context I,
which is allowed by Shamir’s scheme, it were obvious that the shares belonged
to different identities. Accordingly, we choose unique x-coordinates for all shares
w.r.t. a given I, e.g. by counting3. Since we choose the polynomials pi1 and pi2

independently for a given identity idi1 = idi2 in two disclosure contexts I1 and I2,
respectively, we can use arbitrary x-coordinates for a given identity in different
disclosure contexts.
Normally, certain products of pairwise combinations of the x-coordinates of sha-
res pooled for secret recovery can be pre-computed and issued to the participants
in order to improve the performance of secret recovery using Lagrange interpo-
lation (see bj in Sect. A.1). Since the number of shares going to be issued for
a given identity is unknown beforehand, one would have to issue an increasing
number of pre-computed intermediary results together with each share. In order
to profit from these intermediary results, a reidentifier would have to store all of
them, because it generally does not know a priori, of which shares it is going to
make use of. We therefore refrain from this optimization. Table 13.1 summarizes
the adaptations we introduce when applying Shamir’s scheme.

Table 13.1. Application of Shamir’s threshold scheme for secret sharing

adaptation aspect traditional application our approach
shares per recipient fixed weight all generated shares

share distribution during setup phase, stepwise,
x-coordinates (in the clear), x- & y-coordinate
y-coordinate (confidential) (both in the clear)

x-coordinates unique per polynomial unique per discl. context I

“x-products” pre-computation during setup on demand

3 Counting is more efficient w.r.t. time and space than choosing unique x-coordinates
pseudo-randomly.

14

The Mismatch Problem

The way we apply Shamir’s threshold scheme for secret sharing was described in
Sect. 13.4. Having several parallel schemes, one for each identity in a disclosure
context, can lead to incorrect pseudonym disclosure, denoted as mismatches. The
mismatch problem is defined in Sect. 14.1 and the probability of its occurrence
is given in Sect. 14.2. Though for sensibly chosen parameters the probability
of mismatches is negligible, mismatches may be strictly inacceptable in certain
applications. Two complementary solutions are discussed in Sect. 14.3 as well as
described in Sect. 14.3.1 and Sect. 14.3.2.
Chapter 15 ties together the concepts presented so far, including one solution
for the mismatch problem, and informally gives algorithms for pseudonymization
and pseudonym disclosure.

14.1 Definition of Mismatches

Provided the pseudonymizer issues the shares of a secret si as unmarked pairs
〈x, pi(x)〉 according to Shamir’s scheme, due to the perfectness of the scheme a
reidentifier cannot determine which shares within a disclosure context I belong
to the same si, unless it tries to recover an identity from each set of t shares,
where t is the threshold of I.
When ‘blindly’ combining t shares, a reidentifier will not always choose t sha-
res stemming from the same polynomial. In Fig. 14.1 the situation is studied
on the basis of polynomials over R instead of the finite field ZP , which is more
illustrative, but does not change the underlying problem. Consider a reidentifier,
which, as depicted in Fig. 14.1, chooses three shares stemming from three differ-
ent polynomials p2, p3 and p4. The solution p∗ of the linear equations in this case
matches in s∗ = p∗(0) the secret s1 of polynomial p1. If the reidentifier reveals
the respective identity, accountability could not be established correctly.

110 14 The Mismatch Problem

p
1

p
2

p
3

p
4

p*

s4

s3

s2

s1s*

y

x

t=3

share of a combination
secret of combination

=

Fig. 14.1. A mismatch: the solution s∗ of a set of t = 3 incompatible shares matches
a secret s1, though it should not

Accordingly, if the solution of a set of t shares matches a secret si in I, it is
denoted as a valid match if all shares are compatible, i.e. stem from the same
polynomial pi, otherwise it is called a mismatch.

14.2 Probability of Mismatches

Müller analyzed the mismatch problem for Shamir’s scheme [159] and found
that for ng polynomials over a finite field ZP in a given disclosure context Ig the
probability that a mismatch occurs is Pr(Mismatch in {p1, . . . , png

}) = ng

P .
The number ng coincides with the number of identities stored in Ig. For the
whole system we consider the upper bound of the probabilities for all disclosure
contexts, i.e. the disclosure context with the largest ng. Heuristically, this num-
ber can be approximated by the number of pseudonymous entities in the given
application, e.g. the number of distinct identities. For a given application and
the expected application-specific number n of distinct pseudonymous entities the
upper bound of the probability that a mismatch occurs is Pr(Mismatch) = n

P .
To give an impression of acceptable mismatch probabilities, we consider ac-
ceptable collision probabilities of cryptographic hash functions: Pr(Collision) <
2−80 ≈ 10−24 [196]. We propose to use a sufficiently large P > n · 280 for a given
application and an expected n. Based on this rule of thumb, conversely we can
calculate the sensible upper bound for the number n < P · 2−80 of identities in
an application for a given P .
As an example we consider the implementation of this approach (see Part III).
We use 128 bits for the security parameters of the cryptographic primitives, i.e.
P ≈ 2128. In this setting the mismatch probability is acceptable up to 2128·2−80 =
248 ≈ 2.8 · 1014 pseudonymous entities. This number of supported identities
should be sufficient even for very large user populations. If more entities are
expected in the given application, the security parameter P needs to be adjusted
appropriately.

14.3 Tackling the Mismatch Problem 111

14.3 Tackling the Mismatch Problem

As shown in Sect. 14.2 the occurrence of mismatches can be reduced to an accept-
able probability by appropriate choice of P . Nevertheless, in certain applications
it may not be acceptable that mismatches and thus wrong accusations can occur,
no matter how low the respective probability is.
A general observation we made with anonymity technologies is that the strongest
possible anonymity often comes at the price of an impractically high computa-
tional complexity and/or delay. Practical or fielded solutions typically are char-
acterized by slightly relaxed anonymity requirements. In the same spirit we pro-
pose two solutions to mismatch handling. Their properties are summarized in
Table 14.1.

Table 14.1. Properties of the proposed mismatch handling approaches

property
mismatch handling approach
detection avoidance
(verifiers) (linkability labels)

achievable anonymity + not affected − reduced
computational complexity − impractical + practical

The mismatch detection approach shown in Sect. 14.3.1 does not affect the
unlinkability of shares. Since this approach retains the perfectness of Shamir’s
scheme it does not impair the achievable anonymity.
The other side of the coin is that for unlinkable shares searching for sets of
compatible shares has a high computational complexity. The mismatch avoidance
approach described in Sect. 14.3.2 sacrifices the unlinkability of shares in favor
of a lower computational complexity in order to achieve a practical solution.
In Part III we follow the mismatch avoidance approach using linkability labels.
In addition we (ab)use verifiers to detect data corruption in the pseudonymity-
layer.

14.3.1 Mismatch Detection Using Verifiers

Section 13.2 described how for a given secret si the corresponding entry ei in
the pseudonym mapping can be identified using the verifiers vi = H(si) without
storing si in the clear in ei. The same idea can be used to detect mismatches.
For each share ri,mi

= 〈x, pi(x)〉 the pseudonymizer can provide a pseudo-random
verifier di,mi

= 〈drand,H(drand, si)〉 in the pseudonymity-layer. A fresh pseudo-
random value drand is used for each verifier, such that each share of si is paired
with a distinct verifier. The verifiers provided with shares are not content-linkable

112 14 The Mismatch Problem

due to the pseudo-randomness of drand and they do not reveal information about
the secrets. As a result, the perfectness of Shamir’s scheme is not reduced by
introducing the verifiers.
In order to detect mismatches, for each share used for recovering a tentative
secret s∗ the reidentifier hashes s∗ together with drand from the corresponding
verifier and compares the result to the hash value in the verifier. If both values
match, the share stems from the same polynomial as s∗. If this is the case for all
shares used to recover s∗, they all are compatible.
Otherwise, s∗ is not the same secret as the one of the polynomial from which a
share stems. This means that some of the shares chosen are not compatible. The
resulting s∗ is invalid and must not be used to reveal an identity and a different
set of shares may be tried. If an entry in the pseudonym mapping exists which
matches an invalid s∗, a mismatch has been detected (see Sect. 14.1).
Since the shares and verifiers are not content-linkable, in order to find compatible
shares, a reidentifier must test all sets of t shares by means of the verifiers. The
computational complexity of this is impractically high.

14.3.2 Mismatch Avoidance Using Linkability Labels

The mismatch detection approach described in Sect. 14.3.1 does not adversely
affect the unlinkability of the shares. Unfortunately, the use of unlinkable sha-
res imposes such a high computational cost on reidentifiers that this venue is
impractical.
A straightforward approach solves the discussed disadvantage of having unlink-
able shares and simultaneously avoids the mismatch problem. Instead of pairing
shares with verifiers in the pseudonymity-layer, shares are paired with linkability
labels that enable reidentifiers to determine, whether two shares stem from the
same polynomial. That is, all shares ri,mi

stemming from the same polynomial
pi, and thus from the same identity idi within I are marked with identical labels
li,mi

= li.
Then, events caused by a given identity in a disclosure context I, are linkable
w.r.t. the labels, even before t shares have been issued1. According to the ter-
minology of Pfitzmann and Hansen [174] (see Sect. 7.3), the linkability labels of
the shares grade the corresponding pseudonyms from transaction pseudonyms
down to role pseudonyms, where the role is the disclosure context I to which the
shares are associated. This implies a reduction of the anonymity achievable for
the pseudonymous entities.
Also, linkability labels may be used in the pseudonym mapping instead of ver-
ifiers, i.e. for an entry instead of ei = 〈vi, ci〉 is used ei = 〈li, ci〉. The correct
entry for a tentative secret can be located by directly matching the label of

1 It would therefore be sufficient to choose x-coordinates unique w.r.t. each pi(x).

14.3 Tackling the Mismatch Problem 113

the shares used for recovering the secret against the labels in the entries. Note,
that it is then only a small step to integrate the pseudonym mapping with the
pseudonymity-layer by using li = ci. Such an extension is proposed in Sect. 16.3.

15

Operational Pseudonymization
and Pseudonym Disclosure

In the following, we tie together the solutions presented in the previous Chap-
ters of this Part and describe how to generate the pseudonym mapping and the
data in the pseudonymity-layer as well as how pseudonym disclosure works. The
associations and dependencies between the elements in the application-layer, in
the decision tree, in the pseudonymity-layer, and in the pseudonym mapping
are depicted in Fig. 15.1, already respecting the extensions in Sect. 16.3 and
Sect. 16.6. Figure 15.2 depicts an abstraction of the respective data flow, show-
ing for a given triplet of identity, disclosure context and weight the cryptographic
operations for data in the pseudonymity-layer and in the pseudonym mapping,
as well as the mismatch avoidance/detection and the selection of the pseudonym
mapping entry corresponding to a recovered secret. In the gap between the pseu-
donymizer and the reidentifier in Fig. 15.2 the data is shown, which is actually
transmitted from the pseudonymizer to the reidentifier. Considering this data,
the encrypted features ci and the entry verifiers vi are components of the pseu-
donym mapping, whereas the remaining data resides in the pseudonymity-layer.
Note, that Fig. 15.2 omits operations in the application-layer, the linkage to the
application-layer, the initialization, the use of the decision tree and some further
details.
In Part III we use the practical approach for mismatch avoidance using linkability
labels (see Fig. 15.2a) instead of verifiers for misuse detection (see Fig. 15.2b).
The solution presented in this Chapter therefore incorporates the approach for
mismatch avoidance. An extension to the mismatch detection approach that even
conceals the number of entities in the application is given in Sect. 16.2.
For each incoming event the pseudonymizer uses the decision structure described
in Sect. 12.3 to locate the features or identities id, and to determine for each
id the respective disclosure context(s) Ig and the pertinent weight(s) wf,g. For
each triplet 〈id, I, w〉1 the pseudonymizer once initializes a pseudonym mapping

1 Again, in the following description we focus on a given disclosure context Ig and the
respective weight wf,g of id. We therefore omit the indexes of I and w.

116 15 Operational Pseudonymization and Pseudonym Disclosure

F
ig

.
15

.1
.

A
ss

oc
ia

tio
ns

an
d

de
pe

nd
en

ci
es

be
tw

ee
n

el
em

en
ts

in
th

e
ap

pl
ic

at
io

n-
la

ye
r,

in
th

e
de

ci
si

on
tr

ee
,i

n
th

e
ps

eu
do

ny
m

ity
-la

ye
r,

an
d

in
th

e
ps

eu
do

ny
m

m
ap

pi
ng

15 Operational Pseudonymization and Pseudonym Disclosure 117

en
cr

yp
te

d
fe

at
ur

e

sh
ar

e

la
be

l o
f

sh
ar

e

la
be

l o
f

en
tr

y

c i
id

i

k i~E

l il i
m

l ip i
r im

=

p*
s*

s i
k i

=
s*

s i
=

D
id

i

s i
k i

=

Ps
eu

do
ny

m
iz

er
R

ei
de

nt
if

ie
r

x

(a
)

M
is

m
at

ch
av

oi
da

nc
e

us
in

g
la

be
ls

en
cr

yp
te

d
fe

at
ur

e
c i

id
i

k i~E

p i
im

p*
s*

v i
HH

im
dr

an
d

im
dr

an
d

imd

H =
s i

s i
k i

=

=H

s*
s i

=
s i

k i
=D

id
i

ve
ri

fi
er

 o
f

sh
ar

e
ra

nd
om

 v
al

ue
 f

or

sh
ar

e

ve
ri

fi
er

 o
f

sh
ar

e

Ps
eu

do
ny

m
iz

er
x

r

R
ei

de
nt

if
ie

r

M
is

m
at

ch

ve
ri

fi
er

 o
f

en
tr

y

(b
)

M
is

m
at

ch
de

te
ct

io
n

us
in

g
ve

rifi
er

s

F
ig

.
15

.2
.

D
at

a
flo

w
be

tw
ee

n
th

e
ps

eu
do

ny
m

iz
er

an
d

th
e

re
id

en
tifi

er

118 15 Operational Pseudonymization and Pseudonym Disclosure

entry (see Sect. 15.1) and for each occurrence of the triplet it uses the initialized
pseudonym mapping entry to provide the data in the pseudonymity-layer needed
for pseudonym disclosure (see Sect. 15.2). Finally, Sect. 15.3 describes how the
reidentifier can use the data in the pseudonymity-layer together with the pseu-
donym mapping to disclose pseudonyms. Two different modes of operation are
outlined for the reidentifier in Sect. 15.3.1 and Sect. 15.3.2. Several extensions
are described in Chap. 16.

15.1 Initialization

After isolating an identity id and determining an associated disclosure context I
and weight w, check if the data structure of the pseudonym mapping for I exists.
If that is not the case, create it and initialize its x-coordinate counter x.2 If id
is not yet a member of I, create a pseudonym mapping entry ei in I, choose a
label li and a pseudo-random encryption key k̃i, both unique w.r.t. I, encrypt
id as ci := E(k̃i, id) and store li and ci in ei := 〈li, ci〉. In the following treat
the respective decryption key ki as the secret si = ki to be shared. Annotate
the new entry ei with: idi := id, si := ki, an initialized share counter mi,
and t− 1 pseudo-randomly chosen coefficients ai,1, . . . , ai,t−1 for the polynomial
pi(x) = si +

∑t−1
j=1 ai,j · xj , where t is the threshold associated with I. Finally,

choose a pseudonym ni and annotate ei with ni. Make merely ei or the complete
pseudonym mapping I, but not the annotations, available to the reidentifiers.
Note, that the pseudonyms can be chosen independently from the other parame-
ters of ei, but they need to meet the requirements of the application w.r.t. format
and content-linkability as well as the pseudonymity requirements of the entities.
Since the choice of ni is application-specific, it is not discussed here (see (2) in
Sect. 20.3).

15.2 Pseudonymization

After isolating an identity id, determining an I and w, and locating the initial-
ized pseudonym mapping data structure for I, locate the corresponding entry ei

using the annotation idi. Write the identifier of I to the pseudonymity-layer and
determine the label li from ei, then write li,mi

:= li to the pseudonymity-layer.3
Then, perform the following steps w times: increment the x-coordinate counter
2 Since the shares from different polynomials are marked with different labels, there

is no need to conceal, whether the x-coordinates of the shares stem from different
polynomials. We could as well use an individual counter xi for each entry ei instead
of a global counter x for each disclosure context.

3 Since the labels li,mi = li for all shares ri,mi of si are identical, it is sufficient to
mark collectively distributed shares with just one label.

15.3 Pseudonym Disclosure 119

x of I and the share counter mi in ei’s annotations; compute the next share for
si as ri,mi

:= 〈x, pi(x)〉, and write ri,mi
to the pseudonymity-layer.

When all w shares have been been written to the pseudonymity-layer for all I
associated with id, id can be replaced by a pseudonym. For the pseudonym ni,
check the pseudonymity and linkability requirements and decide, if ni could be
renewed according to the requirements (see (2) in Sect. 20.3).4 Then, (possibly
after renewing ni) replace id in the event (in the application-layer) with ni

and establish the linkage from the pseudonymity-layer to ni in the event. The
linkage should be established without additions to the event, such that its format
is sustained.5

Finally, make the rewritten event (application-layer) as well as the disclosure
context identifier, the label and the shares (pseudonymity-layer) available to the
reidentifiers.

15.3 Pseudonym Disclosure

We propose two modes of operation for the reidentifier: the batch mode in
Sect. 15.3.1 and the on-the-fly mode in Sect. 15.3.2. In the batch mode, the
reidentifier processes a given block of application-layer and pseudonymity-layer
data, discloses all pseudonyms satisfying the disclosure condition and finishes. In
contrast to this block-wise processing, in the on-the-fly mode the reidentifier as
soon as possible discloses the pseudonyms in audit records coming in from an au-
dit data stream. In the on-the-fly mode the reidentifier finishes if the stream ends.
Due to the higher computational complexity and the higher complexity of the
implementation of the on-the-fly mode, we chose to implement only the batch
mode (see Part III). Note, that the pseudonymizer as described in Sect. 15.2
provides an on-the-fly mode and, as a result, can also be used for batch mode
processing.
In both modes the reidentifier uses the same algorithm to reconstruct the pseu-
donym mapping from the pseudonymity-layer data and to recover secrets from
the shares available from the reconstructed pseudonym mapping. The reidentifier
collects all updates of the pseudonym mapping of I and associates the labeled
shares from the pseudonymity-layer with their corresponding pseudonym map-
ping entry ei. The entry is located using the identifier of I provided by the
pseudonymizer and matching the collected label against the labels of the entries
in I (see Sect. 12.3 and Sect. 14.3.2). For each ei, the reidentifier also keeps track
4 Ensure that ni does not equal any other pseudonym for the current event, such that

the linkage described in Footnote 5 is a unique search criterion.
5 For the implementation we use the following solution (see Sect. 19.2). To link a given

ni in a given event in the application-layer with the corresponding disclosure con-
text(s), label(s) and share(s) in the pseudonymity-layer, the latter are complemented
with ni and a message digest of the pseudonymized event H(event).

120 15 Operational Pseudonymization and Pseudonym Disclosure

of the linkage (to the corresponding application-layer pseudonym) provided in
the pseudonymity-layer by the pseudonymizer (see Sect. 19.2).
If the number of shares collected for a given ei exceeds the threshold t associated
with I, the reidentifier can recover the secret si and use it to neutralize the
protection of ei.
To do this, choose a set of t shares 〈xi1 , yi1〉, . . . , 〈xit

, yit
〉, all exhibiting

the same label and thus being compatible. Then, compute s∗ := p∗(0) =∑t
j=1 yij

∏
1≤o≤t,o�=j

xio

xio−xij
(Lagrange Interpolation) to recover the secret. Sub-

sequently use s∗ = si = ki to yield idi := D(ki, ci) from ei.

15.3.1 Batch Mode

In the batch mode the reidentifier processes the pseudonymous audit data in two
passes. In the first pass the reidentifier reconstructs the pseudonym mapping to
the completeness degree possible given the available pseudonymity-layer data.
While reconstructing the pseudonym mapping, the reidentifier recovers secrets
as soon as the respective disclosure condition is satisfied, i.e. a sufficient number
of shares has been collected for the corresponding label.6 In the second pass,
the reidentifier locates all pseudonyms in the application-layer audit data and
replaces them with the corresponding identity, if it is found in the pseudonym
mapping using the linkage (see Sect. 19.2.1).
In the batch mode the data in the pseudonymity-layer and in the application-
layer is only processed once. For each pseudonym in the application-layer is a
lookup performed in the pseudonym mapping. Lookups are performed by build-
ing a linkage for the current application-layer audit record and the current pseu-
donym and searching this linkage in the pseudonym mapping.
For a more detailed algorithm see Sect. 20.4, where i.a. the implementation of
the batch mode is described.

15.3.2 On-the-fly Mode

In the on-the-fly mode the reidentifier reconstructs the pseudonym mapping
from the pseudonymity-layer data like in the first pass of the batch mode (see
Sect. 15.3.1). If some secrets are recovered, the reidentifier replaces the cor-
responding pseudonyms in the simultaneously incoming application-layer data
with the respective identities like in the second pass of the batch mode (see
Sect. 15.3.1). Differently from the batch mode in the on-the-fly mode, each time

6 In the implementation the secret recovery is performed in the second pass, if the
disclosure condition is satisfied for the pseudonym mapping entry for the current
pseudonym (see Sect. 20.4).

15.3 Pseudonym Disclosure 121

a secret is recovered the reidentifier must re-consider all of the previously
processed application-layer audit records that might still contain pseudonyms
which could now be disclosed.
Compared to the batch mode, in the on-the-fly mode the reidentifier needs to
perform an additional search in the already processed application-layer audit
data for each pseudonym that is newly disclosed. For searching, the linkage for
each application-layer audit record needs to be computed and compared to the
target linkage from the pseudonym mapping entry of the disclosed pseudonym.
To avoid the cost of the frequent re-computation of the linkage, the linkage
should be cached by the reidentifier for the application-layer data. However,
even if caching is used, the on-the-fly mode is computationally more demanding
than the batch mode.

16

Extensions

In this Chapter some extensions to the basic algorithms from Chap. 15 are
proposed. The extension in Sect. 16.1 considers a finer-grained attacker model.
In Sect. 16.2 an extension is given that allows to conceal the number of entities
in a disclosure context. This extension does not work for shares marked with
linkability labels. Conversely, the extension in Sect. 16.3 is suitable to implement
the mismatch avoidance approach in practice. Two further extensions that allow
to specify more concise models of disclosure scenarios are given in Sect. 16.4 and
in Sect. 16.5. Finally, Sect. 16.6 outlines, how our approach for technical purpose
binding of pseudonym disclosure can be combined with organizational purpose
binding.
The extensions from Sect. 16.1 and from Sect. 16.2 are depicted in Fig. 16.1.
Note, that the extensions from Sect. 16.3, Sect. 16.4, Sect. 16.5 and Sect. 16.6
have been implemented (see Part III).

16.1 Attacker Model

Hitherto we regarded reidentifiers as potential adversaries and equated them
with any other attackers (see Chap. 11). In some applications it might be desir-
able to raise further obstacles for (external) attackers that cannot control any
reidentifiers.
To do so, we initially perform a secure key exchange, such that both, the pseudo-
nymizer and the reidentifiers, know an encryption key k̃e. Only the reidentifiers
know the respective decryption key ke. The secret being shared then is not de-
fined as the key ki needed for decrypting ci. Instead, ki is encrypted under k̃e to
form a secret si := E(k̃e, ki) (see Fig. 16.1).
We also considered alternatively encrypting shares. For mismatch detection it
is expensive to protect shares in the memory of reidentifiers against attackers,

124 16 Extensions

c i
id

i

s i
E

k i

k e~
l il i

m
l ip i

r im

=

p*
s*

s*
s i

=
s i

D k e

k i

en
cr

yp
te

d
fe

at
ur

e

sh
ar

e

la
be

l o
f

sh
ar

e

la
be

l o
f

en
tr

y

k i~E
D

id
i

Ps
eu

do
ny

m
iz

er
R

ei
de

nt
if

ie
r

x

(a
)

M
is

m
at

ch
av

oi
da

nc
e

us
in

g
la

be
ls

en
cr

yp
te

d
fe

at
ur

e

ve
ri

fi
er

 o
f

sh
ar

e
ra

nd
om

 v
al

ue
 f

or

c i
id

i

p i
im

p*
s*

im
dr

an
d

im
dr

an
d

imd
=

s i

k i~
i

cr
an

d

E
r

k i
E k e~

k v
v i

H
k

=
H

k

k v

k v

H
k

H
k

k v

s*
s i

=

id
i

i
cr

an
d

,

D
s i

k e

k iD
r

sh
ar

e

ve
ri

fi
er

 o
f

sh
ar

e

Ps
eu

do
ny

m
iz

er
x

r

R
ei

de
nt

if
ie

r

M
is

m
at

ch

vr
an

d
vr

an
d

ra
nd

om
 v

al
ue

 f
or

ve
ri

fi
er

 o
f

en
tr

y

ve
ri

fi
er

 o
f

en
tr

y

(b
)

M
is

m
at

ch
de

te
ct

io
n

us
in

g
ve

rifi
er

s

F
ig

.
16

.1
.

D
at

a
flo

w
be

tw
ee

n
th

e
ps

eu
do

ny
m

iz
er

an
d

th
e

re
id

en
tifi

er
,c

on
si

de
rin

g
th

e
ex

te
ns

io
ns

fr
om

Se
ct

.1
6.

1
an

d
fr

om
Se

ct
.1

6.
2

16.2 Coarsening the Number of Potential Actors 125

because each share needs to be decrypted before interpolation. If we abandon in-
memory protection of shares by decrypting them on reception, as an alternative
we might protect the entire transmission channel using widely available standard
solutions.
In the case that verifiers are used to detect mismatches, we could increase the
efforts of an attacker also by using a keyed one-way hash-function Hk() instead
of H() such that vi := Hk(kv, si) (see Fig. 16.1), where the symmetric key kv

has been securely exchanged between the pseudonymizer and the reidentifiers.

16.2 Coarsening the Number of Potential Actors

In the case that mismatch detection is used, we already use unlinkable shares.
Additionally, it would be advantageous to conceal also the number of actually
involved entities in order to make it harder for an adversary to apply external
knowledge. For obvious reasons this cannot be achieved when using linkability
labels for mismatch avoidance. Note, that due to the reasons given in Sect. 14.3.1
this extension has rather academic than practical merit.
We introduce dummy entities in I, which are treated like entries for real iden-
tities, except that they are annotated as dummies. The idi for dummies shall
be pseudo-randomly selected from the identities possible for the current feature
type for the given service, e.g. by using the local user account database. In case
no mismatch handling is done, however we have to choose fictitious identities
which do not match any real identities on the host. Otherwise, in the case of
a mismatch we couldn’t discern dummies from real identities. Fictitious identi-
ties shall also adhere to the operating system’s rules concerning the syntax of
identities.1

We can make real entries indistinguishable from dummy entries, as long as their
secrets have not been recovered. We initialize I with a number of dummy entries,
and if a real identity needs to be stored in I, a dummy entry is replaced with a
real entry. In order to make such replacements unobservable, we have to provide
for the ability to completely change the appearance of all entries in I, without
needing to change the information within the entries. Since all items used in
our approach so far are invariant, we introduce some independently and pseudo-
randomly chosen seed values crandi, which can be varied over time. We use
randomized encryption for the identity cryptograms ci := Er(k̃i, crandi, idi)
using the pseudo-random seed crandi (see Fig. 16.1b). Also, we have to make
sure that all ci exhibit the same size, e.g. by appropriate padding. We additionally
choose for and distribute with each I a pseudo-random value vrand to randomize

1 We also considered using dedicated dummy names, pseudo-random bit-strings for
dummy naming and invalid verifiers vi, but all of these are easier to spot as dummies
in the case that a brute force attack on ki is tried.

126 16 Extensions

the verifiers vi by hashing vrand together with the secret si (see Fig. 16.1b). If
we change just vrand and crandi for an ei in I, an observer cannot distinguish
the effect on ci and vi from the effect of varying additional items such as the
identity (idi) and keys (k̃i, k̃e, kv).
The maximum number of potential actors is bounded2 by the number ridmax of
identities registered in the system’s databases. If ridmax is large and the expected
maximum number of actors is u � ridmax, and the expected average number of
shares generated per actor is m, then the maximum number of potential actors
is bounded by u · m ≤ ridmax. Heuristically, we allocate ridmax pseudonym
mapping entries for I if u ≈ ridmax, otherwise we allocate u · m ≤ ridmax

entries. If the actual number of actors exceeds u · m ≤ ridmax, I needs to be
extended appropriately by u·m entries. Note, that the number of actors is known
to be (u ·m · n) + 1, n = 1, 2, . . . each time I is extended. On initialization of an
I, all entries are dummies, and we generate the cryptograms ci and verifiers vi

as usual.
On pseudonym mapping entry initializations, we choose a dummy pseudonym
mapping entry ei to be replaced, choose a new key pair k̃i, ki and new pseudo-
random values crandi and vrand, and compute ci and vi. To conceal, which
dummy ei was replaced, we also change the pseudo-random seeds crandj , j �= i
of all other entries, effectively re-computing all cryptograms (and verifiers). We
also randomize the order of I’s entries. We make the modified I available to the
reidentifiers.
If an attacker observes the actual number upd of updates of the pseudonym map-
ping of I, and the actual number m′ of shares issued from I in the pseudonymity-
layer, he can infer from m′

upd > m that there are fewer than u actors. Even worse,
observing the number of pseudonym mapping updates provides the attacker with
a good estimate of the number of actors. To prevent this, we generate appar-
ently random dummy-traffic updates of I such that m′

upd ≤ m. For dummy-traffic
updates, we change the pseudo-random values of I (vrand) and of all its entries
(crandi). Accordingly, we also randomize the order of I’s entries, and subse-
quently make I available to the reidentifiers.

16.3 Using Pseudonym Mapping Entries as Linkability
Labels

Section 15.1 describes the initialization of a pseudonym mapping entry in a dis-
closure context and that the entry or the whole pseudonym mapping for all
disclosure contexts needs to be made available to the reidentifiers after initial-
ization. While the pseudonym mapping needs still to be managed by the pseu-
donymizer, we can slightly change the definition of the linkability labels, such
2 In special cases we cannot conceal the number of actors, e.g. if several active identities

sequentially trigger the issuing of a bulk of t or more shares each.

16.4 Significance of Repeated Observations 127

user

analysis
site security

officer

audit component

service

pseudonymizer reidentifier

Fig. 16.2. Simplified architectural model due to the extension in Sect. 16.3

that the mapping needs not to be transferred separately to the reidentifiers (see
Fig. 16.2, cf. Fig. 11.1).
We can define the linkability label of a pseudonym mapping entry to equal the
encrypted identity li := ci (see the association between ‘entry label’ and ‘cryp-
togram’ in Fig. 15.1). Since the cryptograms ci are now directly provided in the
pseudonymity-layer (see Sect. 15.2) and are associated with the corresponding
shares, reidentifiers can collect them together in ei. In other words, the pseu-
donym mapping is embedded and transmitted entry-wise, though redundantly,
in the pseudonymity-layer. Hence, the dotted arrow from Fig. 11.1 is missing in
Fig. 16.2. Labels are not used any more to locate the correct cryptogram in the
pseudonym mapping, because they actually are that cryptogram.

16.4 Significance of Repeated Observations

In Sect. 12.1 we assumed for modeling disclosure scenarios that each distinct
observation in a given disclosure context is significant and thus raises the activity
level by its specific weight. This is a perfectly reasonable assumption for many
disclosure scenarios.
For example, to model a password guessing misuse scenario, we assume that up
to a certain number of observations in a row exhibiting the event type loginfail,
we are seeing normal glitches in day to day operations. But, if that threshold is
exceeded, we would like to disclose the account features that are involved (see
Fig. 12.1). That is, if a given feature as an instance of a given feature type occurs
several times in a row, the activity level of the disclosure context should increase
for this feature. Another example for disclosure scenarios, where repeated ob-
servations are significant for the activity level, are resource exhaustion misuse
scenarios.
Certainly there also are disclosure scenarios that we may need to model and
where repeated observations shall not be significant. Rather, for these disclosure
scenarios it shall be significant that an observation occurred at all or not at all.
Consider for example the class of worms attacking web servers to spread on the
Internet. Attacking web servers involves requesting certain URLs in the hope to
successfully exploit pertinent vulnerabilities. For a given worm, many of these

128 16 Extensions

URLs can be very similar, they may differ in only one character in a specific
position of the URL string. It is useful to classify these URLs as the same event
type, firstly, to keep the a priori knowledge small and clear and secondly, to be
able to detect variants. If we do this with the objective to disclose the IP address
from where the worm attacked, we will observe the same feature type several
times, due to the variant-tolerant event type defined above. But the number of
observations may be of no interest or it may vary, such that it is difficult to
define a fixed threshold. It may rather be of interest, which distinct event types,
i.e. feature types, have been observed for a given IP address. This information
tells us what kind of worm is performing the attack. Summarizing, we would
first define the distinct event types over the URLs that let us determine the type
of worm and then associate the corresponding source IP address feature types
with a disclosure context that has for example a threshold equal to the number
of distinct event types. The weights of the feature types could be defined equal
to one and repeated observations would be defined as insignificant.
Treating the repeated occurrence of a feature type as insignificant means to
increase the activity level only on the first occurrence of the feature type, but
not for later occurrences. This can be done by remembering those features in
the annotations of the pseudonym mapping, which have occurred at least once.
If such a feature f occurs the first time, the pseudonymizer stores f in the
annotations and generates w shares as shown in Sect. 15.2. While doing this, the
pseudonymizer additionally stores the used values of the x-coordinate counter
together with f in the annotations. The next time f occurs, the pseudonymizer
recollects that f already has occurred and generates the exact same w shares that
were generated when f occurred the first time. To do this, the pseudonymizer
uses the x-coordinates stored in the annotations with f .
The reason for doing this is that the Lagrange interpolation will only for t com-
patible shares for distinct x-coordinates recover the secret. Thus, the activity
level can only increase if shares are generated for x-coordinates that differ from
the x-coordinates of already provided shares.
Summarizing the results, this means: If f never occurs, no shares are generated
for f and the activity level is not increased. If f occurs the first time, a set rf of
w shares is generated and the activity level increases once by w. If f occurs two
or more times, the same set rf is generated as many times, but still the activity
level increases merely once by w.

16.5 Reconciling Observations

In Sect. 12.2 we restricted the weights of feature types to strictly positive numbers
from N. A monotonically increasing activity level cannot model observations of
activities that cancel each other out in the disclosure scenario.

16.5 Reconciling Observations 129

This can be demonstrated using a password guessing misuse scenario as a disclo-
sure scenario. We assume that up to a certain number of observations with the
event type loginfail, we are seeing normal glitches in day to day operations. But,
if a threshold is exceeded, we would like to disclose the account features that
are involved (see Fig. 12.1). That is, if a given feature as an instance of a given
feature type occurs, the activity level of the disclosure context for this feature
should increase monotonically. But, if a legitimate user sometimes mistypes his
password on the first try and logs in successfully on the second try, the failed
login attempts already have increased the activity level of the disclosure context,
even if they were only glitches. Eventually, the pseudonyms of the user will be
disclosed in that disclosure context, even though the actual activity constitutes
no password guessing misuse scenario.
Obviously, the model for the misuse scenario is inadequate, because it fails to
capture successful log-in activity and to relate it to the failed log-in attempts.
The problem disappears, if the model “knows” that a successful log-in cancels out
previous failed log-in attempts, as long as the activity level has not yet exceeded
the threshold.
The solution we propose is to allow for positive and negative weights w ∈ Z on
the modeling level. As long as the activity level is lower than the threshold, it
can increase for positive weights and it can decrease for negative weights.
Naturally, negative weights on the modeling level need to be implemented crypto-
graphically somehow. The idea is to invalidate as many already provided distinct
shares as specified by the negative weight. Invalidated shares cannot be used to-
gether with (still) valid shares to recover the secret. Since the valid shares and the
shares that need to be invalidated have already been provided to the reidentifiers,
they cannot be easily modified in hindsight. Instead, the polynomial is modified
on the side of the pseudonymizer, such that the secret and the valid shares still
are points on the modified polynomial, but the invalidated shares are not (see
Sect. 16.5.1 for details). As a result, for a given secret, already provided shares
still are accompanied with the same linkability labels in case mismatch avoid-
ance is used, irrespective of being valid or invalidated. Finally, the x-coordinate
counter x is decreased as specified by the weight.
If mismatch avoidance is used, new valid shares are generated using the same
linkability labels as the previously invalidated shares, such that the reidentifier
can associate them with the same disclosure context entry. In case mismatch
detection is used, new valid shares are generated using the same verifiers as the
previously invalidated shares, such that the reidentifier can associate them with
the invalidated shares. In both cases, new valid shares are generated re-using
the x-coordinates of the invalidated shares, such that the new shares overwrite
the previously collected shares with the same x-coordinates, which have been
invalidated.
If all shares have been invalidated, the activity level in the model is zero. This is
similar to a new start of the disclosure scenario. We therefore not only select a

130 16 Extensions

new polynomial, but we completely re-initialize the pseudonym mapping entry.
Most importantly, in this disclosure context the old observations cannot be linked
with forthcoming observations of the entity. Note, that this solves the possible
problem that without this extension no more than P shares can be generated.
Also note, that due to the invalidation approach the lowest value for the activity
level is zero and a negative value does not map directly to the approach.
Suppose that for a given secret s already t shares have been provided and s has
been recovered. If we afterwards invalidated some shares, they could not only
still be used to recover s. Moreover, since any new shares are labeled with the
same linkability label or verifiers as the previously provided shares, it would be
obvious that they belong to the s that already has been recovered. Therefore, if
the activity level has already exceeded the threshold, a merely partial reduction
of the activity level makes no sense. Instead, a complete reset of the activity level
to zero would work. It may for example be desired that the activities of a given
entity are not indefinitely accountable after some of its pseudonyms have been
disclosed.
Note, that the complementary nature of observations is not a function of merely
the usual semantics of the observations. Rather, the complementary nature of
observations is a function of their semantics w.r.t. the given disclosure scenario.
We give two examples. In many resource exhaustion misuse scenarios a certain
observable activity a that allocates a certain resource occurs so often that the
resource cannot be allocated any further, resulting in denial of service. Usually,
there is a complementary, observable activity ã that frees the resource. This ac-
tivity is not part of the resource exhaustion misuse scenario, it rather occurs
during normal operation. The complementary observations could be paired to
cancel each other out. In a password guessing misuse scenario, an observed suc-
cessful log-in ã shall render all previously observed failed log-in attempts a void,
if the activity level has not already exceeded the threshold of the disclosure
context.
Note, that most operations in applications have a return value signifying the suc-
cess of the operation. If the operation can be observed, usually also the return
value is observable. Then, the observations of two attempted operations result
in two distinct feature types if one attempt returns successfully and the other
returns failed. It depends on the disclosure scenario at hand, how to use this
knowledge profitably. For the resource exhaustion disclosure scenario it is useful
to consider only the observations of successfully returning allocation and deal-
location operations a and ã as complementary activity. But, for the password
guessing disclosure scenario the world is somehow reversed. There, a successful
log-in ã shall cancel out failed log-in attempts a.
Hence, the pairing of given observations could vary for different disclosure sce-
narios. Therefore, we refrain from associating observations of complementary
activity in a pairwise manner, such that the shares for the associated and earlier
observation are invalidated. Instead, always the youngest w shares are invali-
dated. The order of the shares is insignificant, anyway. The downside of this

16.5 Reconciling Observations 131

simpler approach is that a feature type f̃ with a negative weight will decrease
the activity level, if possible, even if the complementary feature type f with the
positive weight has not yet occurred. In other words, f̃ will cancel the activity
level contribution of any feature type, not only the one of f .
For some activity there exists no complementary activity that might eventually
cancel out each other. In some disclosure scenarios it might nevertheless be useful
to forget certain activity after a certain time interval or after a certain amount
of overall activity. Using the idea of share invalidation, time-outs can be realized
for arbitrary feature types. The pseudonymizer manages the time-outs in the
annotations while remembering the weights of the concerned feature types. If a
time-out actually occurs, the pseudonymizer invalidates the youngest w shares
as signified by the weight stored with the time-out.

16.5.1 Cryptographic Enforcement by Share Invalidation

To invalidate a share that has already been computed using a given threshold
scheme and provided to the reidentifiers, the threshold scheme is modified, such
that

• the secret and already provided and still valid shares remain unmodified,
• neither can invalidated shares be used exclusively to reconstruct the secret,

nor can they be used in combination with valid shares that are provided after
the threshold scheme modification,

• newly provided valid shares are distinct from already provided shares that
have been invalidated.

For the adapted Shamir threshold scheme we can leverage its additivity property:
If s1, . . . , sn are shares of a secret s and s′1, . . . , s

′
n are shares of a secret s′, then

s1 + s′1, . . . , sn + s′n are shares of a secret s + s′.
In order to invalidate a provided share sj = p(xi), j ∈ {1, . . . , k} after the shares
s1, . . . , sk with k < t have been provided, the polynomial p(x) =

∑t−1
j=0 aj · xj of

the threshold scheme is modified by adding a carefully constructed polynomial
b(x) to p(x). The polynomial b(x) has the following properties:

1. b(xi) = 0, if i ∈ {1, . . . , k}\{j} to keep the provided valid shares unmodified,
2. b(xj) �= 0 to invalidate sj ,
3. b(0) = 0 to keep the secret unmodified, and
4. the degree of b(x) is less or equal to t − 1, and
5. b(x) is pseudo-random w.r.t. the previous properties.

132 16 Extensions

Such a polynomial can be constructed by splitting b(x) in two factors c(x) and
d(x), where b(x) = c(x) · d(x). Properties (1) and (3) can be met by choosing
c(x) = x ·

∏k
i=1,i �=j(x − xi).

To warrant that secret recovery is infeasible before the threshold is exceeded, in
addition to demanding property (2), d(x) must have no zeros. In order to satisfy
properties (4) and (5), d(x) must be a pseudo-random polynomial, d(x) must
not have zeros, and d(x) has to be of degree at most (t − 1) − k.
In order to invalidate share sj , the polynomial p(x) is modified to yield p′(x) =
p(x) + b(x) = p(x) + c(x) · d(x) with c(x) and d(x) chosen as described above.
Since all coefficients of p(x), except for the linear term, are chosen uniformly and
pseudo-randomly, this property holds for p′(x) as well.
When p(x) has been replaced with p′(x) the invalidation can be repeated. More-
over, it is possible to invalidate two or more shares at the same time by appro-
priately adjusting b(x).
Currently, work is underway to provide an appropriate definition of security for
share invalidation and to prove that the construction given above is secure w.r.t.
to this definition [160].

16.6 Organizational Purpose Binding

Our approach provides technical purpose binding for the disclosure of pseu-
donyms. As a complementary concept the organizational purpose binding of
pseudonym disclosure has been introduced in Sect. 7.2.1. Here we give two ex-
amples for circumstances where it may be advantageous to use organizational
purpose binding instead of or in addition to technical purpose binding (see also
Sect. 7.2.3):

Example 1: In a given application some disclosure scenarios that are of a certain
importance for the SSO may only be modeled with a disclosure context Ig

which is associated with some observation f and with a threshold value tg ≤
wf,g. That is, as soon as f occurs, the disclosure condition for the pseudonyms
of f is met immediately. Hence, it would be futile to pseudonymize f in the
first place, if technical purpose binding is used. Instead, the PPO may use
organizational purpose binding for the pseudonyms of f , such that the SSO
can disclose the pseudonyms if and only if he cooperates with the PPO.

Example 2: In a given application some disclosure scenario might occur, which
has not been anticipated and is not associated to the features involved in
the scenario. Then, the relevant features cannot be disclosed by the SSO,
because in general they do not meet a disclosure condition. Modeling the
respective disclosure scenario in hindsight will not have any effect on the
pseudonyms that have been generated in advance for the relevant features.

16.6 Organizational Purpose Binding 133

If it is important in the given application to be able to even disclose pseu-
donyms associated with disclosure scenarios that have not been anticipated,
organizational purpose binding can be used in addition to technical purpose
binding. In the more common case that a modeled disclosure scenario occurs,
the associated pseudonyms can be disclosed by the SSO just in time. In the
rare case that a disclosure scenario occurs, which has not been modeled in
the a priori knowledge, the SSO must cooperate with the PPO to disclose
the associated pseudonyms.

There are several possibilities to achieve organizational purpose binding. As ex-
amples we roughly outline two possible solutions in Sect. 16.6.1 and Sect. 16.6.2
without considering more intricate aspects, such as fairness and verifiability. In
both solutions the PPO holds a secret decryption key ko,PPO. The solutions do
not require that the PPO discloses his secret decryption key to any of the SSOs.
This ensures that the SSOs must cooperate with the PPO to be able to recover
some secret. In the given solutions we assume that the SSOs trust the PPO to
provide correct results. Moreover, the control requirements for pseudonym dis-
closure subject to organizational purpose binding must comply with Fig. 8.6a,
irrespective of the control requirements for pseudonym disclosure subject to tech-
nical purpose binding depicted in Fig. 11.1 and Fig. 16.2.

16.6.1 Cryptographic Enforcement using Threshold Cryptography

Organizational purpose binding can be enforced using threshold cryptography
[67], e.g. based on the El-Gamal cryptosystem and on Shamir’s threshold scheme.
In this solution certain sets of SSOs need to cooperate with the PPO to recover
the secret si. The secret sharing scheme can be used to implement the desired
access structure [211]. Each SSOj holds an individual decryption key ko,j . The
ko,j and ko,PPO are chosen such that they are cryptographic shares of a secret
decryption key ko in a suitable secret sharing scheme.
When initializing a pseudonym mapping entry, the pseudonymizer encrypts
the secret si in the cryptosystem using the encryption key k̃o corresponding
to ko. When pseudonymizing, the pseudonymizer provides the resulting es-
crow data co,i = E(k̃o, si) instead of or in addition to the shares of si in the
pseudonymity-layer. From the escrow data the SSOs and the PPO can locally
perform the decryption of co,i yielding the partial results si,j := D(ko,j , co,i)
and si,PPO := D(ko,PPO, co,i), respectively. Only cooperatively they can yield
si without revealing ko, ko,j and ko,PPO by combining an eligible set of partial
results si,j and si,PPO within the secret sharing scheme.

16.6.2 Cryptographic Enforcement using Symmetric Cryptography

Organizational purpose binding can also be enforced using symmetric cryptog-
raphy. Here we assume stronger restrictions on the computational complexity of

134 16 Extensions

the cryptographic primitives that we may use. In return, we drop the requirement
that only certain sets of SSOs are eligible to recover the secret si.
When initializing a pseudonym mapping entry, the pseudonymizer simply en-
crypts si using k̃o = ko,PPO in a symmetric cryptosystem. When pseudonymiz-
ing, the pseudonymizer provides the resulting escrow data co,i = E(k̃o, si) instead
of or in addition to the shares of si in the pseudonymity-layer. To reveal si the
SSOs need to cooperate with the PPO, who can decrypt co,i and provide si.

Part III

Application to Unix Audit Data

In this Part we show how the set-based approach from Part II can be applied
to audit data of operational systems in practice. We chose to use Unix systems
for this purpose. Unix systems today are reliable and therefore wide-spread plat-
forms for services offered via the Internet. Our approach can as well be shown
to work in practice using different platforms.
Chapter 17 gives on overview of the relevant concepts of the audit architecture
of and the audit data occurring in Unix systems. The predominantly used audit
service syslog is described in the some detail in Chap. 18. In Chap. 19 is shown,
how our set-based approach from Part II can be instantiated for syslog-style
audit data. Finally, Chap. 20 describes the toolset Pseudo/CoRe that implements
our approach for syslog-style audit data. Part IV indicates that the toolset
Pseudo/CoRe is able to handle real-world audit data volumes in practice.

17

Unix Audit Data

In this Chapter the relevant concepts of the audit architecture of Unix systems
are introduced (see Sect. 17.1, Sect. 17.1.1 and Sect. 17.1.2). The different cat-
egories of audit data occurring in these systems are introduced in Sect. 17.1.3.
In Sect. 17.2 is shown that all categories can be covered, if we implement our
approach for ASCII format audit data, i.e. syslog-style audit data. In Chap. 18
syslog audit data is examined in more detail.

17.1 Unix Audit Architecture

Figure 17.1 depicts an abstraction of components relevant for auditing at the
kernel level and at the user level. Basically, we find two situations. OS audit
components and application processes either store their audit data in dedicated
files or they deliver the audit data via an audit service.
Well known examples for implementations of audit services are auditd from
Sun’s Basic Security Module (see Sect. 17.1.1) and syslogd (see Sect. 17.1.2).
Audit services provide standardized additional data for each audit record, such
as a time stamp and an identifier representing the host on which the audit record
was generated. They more or less unify audit data management by standardizing
the audit record (header) format. Moreover, audit services in practice provide
better manageability by merging or distributing audit data based on classifica-
tions.

17.1.1 Auditd

The audit service auditd is part of the SunSHIELD Basic Security Module
(BSM) [117] which is included with Solaris starting with release 2.3. The BSM is
intended to supplement Solaris for TCSEC C2 compliance (Trusted Computer
System Evaluation Criteria [37, 38]).

138 17 Unix Audit Data

Application 1

auditd

Application 2

Kernel Interface

OS−Kernel

BSM Audit Module

Process− Memory− File−
System

Packet−Audit

Network−
Interfaces

Network

syslogd

Management Management

Host−Audit Host−Audit App.−Audit Accounting Net−Audit

Fig. 17.1. Solaris audit components

Audit records may be delivered to auditd by the kernel and by user level appli-
cations. BSM kernel level events comprise system calls that allow for potentially
security sensitive activity. The dashed arrow in Fig. 17.1 from ‘Application 1’
to the ‘Kernel Interface’ represents system calls of the application, whereas the
solid arrow from the ‘BSM Audit Module’ to ‘auditd’ represents the flow of the
audit records for the corresponding system calls.
A few selected Solaris standard user level applications emit audit records via
auditd, such as some local and remote login services, passwd, inetd, mountd,
etc. In Fig. 17.1 this is signified by the solid arrows pointing from the applications
to auditd.

17.1.2 Syslogd

As auditd, also syslogd collects audit records from the kernel level and from
the user level. In Fig. 17.1 this is shown by the solid arrows pointing from ‘Ap-
plication 1’ and from the ‘OS-Kernel’ to ‘syslogd’. Optionally syslogd also
accepts remotely generated audit records at UDP port number 514 (not shown
in Fig. 17.1). The syslog system is described in more detail in Chap. 18.

17.2 Selection of Syslog 139

17.1.3 Audit Data Categories

We distinguish three categories of audit data:

Host-based audit data relates to activity taking place within a host system and
it is also generated by audit components on that host system.

Network-based audit data is generated by audit components associated with
network resources, where data is handled at abstraction levels below the
application layer.

Out-of-band audit data refers to activity that is not monitored by the IT system.

While expanding on different data categories is helpful for classifying audit data
analysis systems (e.g. intrusion detection systems [8, 63]), in this text we are
mainly interested in covering with one design as many existing audit data cate-
gories as possible.
All mentioned audit data categories are represented in Fig. 17.1. Host-based
data is collected in the storage components labeled ‘Host-Audit’, ‘Accounting’
and ‘App.-Audit’. The respective audit components are part of the applications
and of the kernel, e.g. the ‘BSM Audit Module’. Network-based data also is
extracted by a kernel module, in our case using ip filter [181] (see ‘Packet-Audit’
in Fig. 17.1).1 The acquisition of out-of-band audit data is usually implemented
by means of applications querying sources external to the IT system.

17.2 Selection of Syslog

When considering the pseudonymization of audit data, all relevant audit data
categories mentioned above should be covered. Available audit components use
various audit record formats. There have been proposed some common audit
data formats [202, 11, 7] and many intrusion detection systems use their own
canonical format, but in the past these formats have not been taken up on a
wide scale.
With our design we aim at a non-invasive, easy to install toolset that covers
as many categories of audit data as possible. We therefore decided to build a
pseudonymizer for syslog-style audit data. Due to its uniformity and availability
in most significant Unixes, many audit components in the Unix world leverage
the syslog audit service for recording audit data. Also active network components
such as routers provide for remote audit data recording using syslog. Finally,

1 The packet audit data path in Fig. 17.1 actually is a simplified illustration. Ip filter,
as commonly set up, sends audit data via ipmon to syslogd. The audit data path of
other suitable products may vary.

140 17 Unix Audit Data

there are several third party products available for Windows driven systems to
integrate with an existing Unix syslog infrastructure.
By supporting syslog we can pseudonymize host-based, network-based and out-
of-band audit data. Syslog supports host-based audit data generated by most
network services and by the kernel. Network-based audit data as generated by
many firewalls, routers and end systems protected by IP traffic filters, such as ip
filter, can be directed to syslogd. Out-of-band data can be covered if applications
are made aware of external activity and if these applications use syslog to record
the corresponding audit records.
Actually, we do not limit our design to the syslog audit record format. The design
supports arbitrary ASCII format audit data. Audit components not using syslog,
but directing their audit data to dedicated files, can be covered directly or by
means of a redirector, which directs audit data from arbitrary files to syslogd
(see Sect. 19.4.2).
In practice, our design covers most of the audit data usually collected in Unix
systems. In certain environments additional audit data is collected, which might
need to be pseudonymized, but is not yet covered by our design. For example,
many off-the-shelf Unix systems provide the ability to generate accounting data
and TCSEC C2 audit data.
The Unix accounting monitors the utilization of shared system resources. Its
record format is very similar on all Unixes, involving a low recording overhead. An
audit record is emitted after the respective activity terminates. As a consequence,
accounting records for daemon processes are normally being withheld. Thus,
accounting will not generate privacy problems for networked service clients, but
sensitive information regarding local users is recorded. Nowadays accounting is
seldomly used. If at all, pseudonymizing accounting data makes the best sense
for servers to which users log-in locally.
Audit record formats conforming to TCSEC C2 vary between implementations
of diverse vendors. Tailoring our design to a specific format would limit its ap-
plicability. Anyhow, particularly Sun’s BSM (see Sect. 17.1.1) is quite popular
with host-based intrusion detection systems, which potentially can impair the
privacy of users associated with a log-in session. In Part V we therefore refine
and automate our approach w.r.t. misuse detection analysis.

18

Syslog

In Chap. 17 has been shown that all categories of audit data can be covered
by our approach, if it is applied to ASCII format audit data. A main source of
ASCII format audit data is the syslog audit service, which is by default used by
many audit components in Unix systems. Therefore, the syslog audit service is
described in the necessary detail in this Chapter.
Sect. 18.1 summarizes which kinds of activity are documented in syslog audit
data and Sect. 18.2 describes in some detail the processing of audit data by
syslogd. Based on the knowledge about which input sources syslogd sup-
ports (see Sect. 18.2.1), how audit records can be selectively processed (see
Sect. 18.2.2), and how the output format is defined (see Sect. 18.2.3), we pro-
pose several approaches in Sect. 18.3 for integrating our approach with the syslog
audit service. In Chap. 19 is examined how the approach from Part II can be
instantiated for syslog-style audit data.

18.1 Typical Syslog Audit Data

As described in Sect. 17.2, host-based, network-based and out-of-band audit data
is consolidated via syslog. The audit data collected via syslog describes activity
and conditions monitored by diverse audit components of the IT system. These
audit components are categorized as facilities in syslog parlance. An audit com-
ponent that monitors an activity or condition supplies a rating of its severity
[214, 139]. The priority of an audit record is defined as the pairing of the corre-
sponding facility and severity.
The severity ranges from debugging and informational over error conditions to
emergency conditions. Primarily informational and diagnostics messages from
the kernel and from network services are recorded via syslog. Some sample audit
records are shown in Fig. 18.1. For the sake of presentation we numbered the
audit records and omitted the priority, time stamp and host fields (PRI, TS and

142 18 Syslog

1
ft
pd
[7
42
7]
:
xf
er
lo
g
(s
en
d)
:

30
po
ny
.p
uf

24
03
69

0
24
03
69

fu
ns
tu
ff
.t
ar
.g
z
b
_

o
g
de
xt
er

ft
p
0
*
c

2
ft
pd
[7
42
7]
:
xf
er
lo
g
(s
en
d)
:

28
po
ny
.p
uf

24
39
43

0
24
39
43

fu
ns
tu
ff
.t
ar
.g
z
b
_

o
g
de
xt
er

ft
p
0
*
c

3
pp
po
ed
[1
54
59
]:

in
va
li
d

st
at
e
a7

4
pp
po
ed
[1
54
59
]:

Fa
il
ed

to
di
sc
ov
er

se
rv
er
!

5
Pl
ut
o[
13
32
1]
:
St
ar
ti
ng

Pl
ut
o
(F
re
eS
/W
AN

Ve
rs
io
n
1.
9)

6
Pl
ut
o[
13
32
1]
:

in
cl
ud
in
g

X.
50
9
pa
tc
h
(V
er
si
on

0.
8.
1)

7
Pl
ut
o[
13
32
1]
:
X.
50
9
ce
rt
if
ic
at
e

fi
le

’/
et
c/
x5
09
ce
rt
.d
er
’
no
t
fo
un
d

8
Pl
ut
o[
13
32
1]
:
Op
en
PG
P

ce
rt
if
ic
at
e
fi
le

’/
et
c/
pg
pc
er
t.
pg
p’

no
t
fo
un
d

9
Pl
ut
o[
13
32
1]
:
li
st
en
in
g

fo
r
IK
E
me
ss
ag
es

10
Pl
ut
o[
13
32
1]
:
FA
TA
L
ER
RO
R:

bi
nd
()

fa
il
ed

in
fi
nd
_r
aw
_i
fa
ce
s4
()
.
Er
rn
o
13
:
Pe
rm
is
si
on

de
ni
ed

12
se
nd
ma
il
[2
32
48
]:

ge
th
os
tb
ya
dd
r(
19
2.
16
8.
3.
1)

fa
il
ed
:

1
13

wu
.f
tp
d[
46
57
]:

wa
rn
in
g:

/e
tc
/h
os
ts
.a
ll
ow
,
li
ne

12
:
ca
n’
t
ve
ri
fy

ho
st
na
me
:
ge
th
os
tb
yn
am
e(
mp
or
t8
0.
mi
ne
rv
a.
co
m.
a.
..

14
wu
.f
tp
d[
46
58
]:

wa
rn
in
g:

/e
tc
/h
os
ts
.a
ll
ow
,
li
ne

12
:
ca
n’
t
ve
ri
fy

ho
st
na
me
:
ge
th
os
tb
yn
am
e(
mp
or
t8
0.
mi
ne
rv
a.
co
m.
a.
..

15
ke
rn
el
:
LI
DS
:
li
ds
ad
m

(2
2
5
in
od
e
28
74
6)

pi
d
14
41
9
us
er

(0
/0
)
on

tt
yp
18
1:

tr
y

to
op
en

/e
tc
/l
id
s/
li
ds
.c
on
f

fo
r.
..

16
po
rt
se
nt
ry
[8
48
]:

at
ta
ck
al
er
t:

SY
N/
No
rm
al

sc
an

fr
om

ho
st
:
po
ny
.p
uf
/1
92
.1
68
.1
.4

to
TC
P
po
rt
:
21

17
tc
pl
og
[1
04
0]
:

SY
N

RE
S2

:
ft
p

fr
om

19
2.
16
8.
1.
4
po
rt

45
69
1

18
tc
pl
og
[1
04
0]
:
FI
N
SY
N

PS
H

UR
G

:
ft
p

fr
om

19
2.
16
8.
1.
4
po
rt

45
69
3

19
tc
pl
og
[1
04
0]
:
FI
N
SY
N

PS
H

UR
G

:
ft
p
fr
om

19
2.
16
8.
1.
4
po
rt

45
69
3

20
tc
pl
og
[1
04
0]
:
FI
N

PS
H

UR
G

:
po
rt

34
51
3
fr
om

19
2.
16
8.
1.
4
po
rt

45
69
7

21
tc
pl
og
[1
04
0]
:
FI
N

PS
H

UR
G

:
po
rt

34
51
3
fr
om

19
2.
16
8.
1.
4
po
rt

45
69
7

22
tc
pl
og
[1
04
0]
:
QU
ES
O:

po
rt

34
51
3
fr
om

19
2.
16
8.
1.
4
po
rt

45
69
7

23
lo
gi
n[
15
10
]:

RO
OT

LO
GI
N

on
‘t
ty
1’

24
lo
gi
n[
12
57
1]
:
IL
LE
GA
L

RO
OT

LO
GI
N
on

‘t
ty
S1
’

F
ig

.
18

.1
.

Sa
m

pl
e

sy
slo

g
au

di
t

re
co

rd
s

<
36

PR
I >

Oc
t
31

03
:1
3:
37

TS
po
ny

H
su

AC
[
31
33
7

PI
D]
:

pa
m_
au
th
en
ti
ca
te
:
Au
th
en
ti
ca
ti
on

fa
il
ur
e
pt
s/
14

de
ed
ee
-r
oo
t

MS
G

F
ig

.
18

.2
.

Pa
rt

s
of

a
sa

m
pl

e
sy

slo
g

au
di

t
re

co
rd

18.2 Syslog Audit Data Processing 143

H in Fig. 18.2). Figure 18.1 contains informational audit records (lines 1 and
2), diagnostic audit records (lines 3 and 4), diagnostic audit records related to
security (lines 5 through 14) as well as possibly attack related audit records (lines
15 through 24).
Also serious activity of users associated with log-in sessions are recorded by
syslog. Depending on the system configuration, a variety of other sorts of activity
may be reported to syslog. As an example, the intrusion detection system Snort
[186, 187] is capable of reporting alarms to syslog. Basically, syslog audit data is
collected and used for troubleshooting and limited manual intrusion detection.
Other intrusion detection systems also analyze syslog audit data, such as the
STAT Tool Suite [219].

18.2 Syslog Audit Data Processing

Audit records that are intended to be recorded by the syslog audit service are
received by the syslogd application process either from user level application
processes, from kernel level code or optionally via the network from remote audit
components. The ability to process audit data provided by remote audit com-
ponents allows for the centralized consolidation of audit data from a variety of
platforms, such as routers, firewalls, intrusion detection systems and end systems
driven by widespread operating systems.
Unfortunately, the syslog application protocol is traditionally implemented over
UDP (port number 514) without any security precautions. This opens several
opportunities for attack [139]. Therefore, on most modern Unixes, the reception
of syslog audit data from remote audit components is disabled by default or
can be disabled by the system administrator. The IETF Syslog Working Group
endeavors to develop a standard to secure the syslog protocol [158, 97]. In the
mean time some alternative, purportedly more secure syslog replacements are
available for Unix, such as nsyslogd [182]. Another option is to use IPSEC [127]
to secure the syslog traffic.

18.2.1 Input

When delivering an audit record to syslog, the generating audit component pro-
vides the priority, i.e. the pairing of the according facility and severity, as well
as the name of the respective audit component. At the discretion of the audit
component and in addition to its name, a process ID is supplied, identifying
the application process generating the audit record. Apart from this information
the audit record comprises a description of noteworthy activity. The description
is ASCII-encoded in a human-readable form, but there are no standards with
regard to the format of the description. The description format thus is specific
to a given audit component and may vary even between different versions of a
given audit component.

144 18 Syslog

18.2.2 Processing

The syslog processing of incoming audit records can be configured by the system
administrator based on the record priority. Some implementations of syslogd
allow finer grained selection criteria such as the name of the audit component.
Basically, syslogd sequentially evaluates rules provided by the system adminis-
trator. The priority of each incoming audit record is matched against the rules.
When a rule matches, the audit record is written out to the destination specified
by the matching rule. Possible destinations are files, devices, named pipes, the
console of one or more users being logged on, and syslogd processes on remote
hosts. The details on rule specification are described elsewhere [214].

18.2.3 Output

Before writing an audit record out to the specified destination, syslogd prepends
to the message content (see ‘MSG’ in Fig. 18.2) a local time stamp (date/time)
(see ‘TS’ in Fig. 18.2), the (fully qualified domain) name or the IP address of
the local host (see ‘H’ in Fig. 18.2) and the name of the audit component (see
‘AC’ in Fig. 18.2), optionally augmented by the respective process ID (see ‘PID’
in Fig. 18.2). Only when forwarding the audit record to a remote host, syslogd
prepends the respective priority (see ‘PRI’ in Fig. 18.2) to the message, which
encodes both, facility and severity, in one integer value.

18.3 Embedding Audit Data Pseudonymizers

There are several opportunities for pseudonymizing audit records along the path
from the generating audit component to the consumer or sink. Figure 18.3 shows
these possibilities. According to the reasoning in Sect. 17.2, we focus on ASCII
format audit data in the following. The places where ASCII format audit data
can be pseudonymized are marked with a dark disc in Fig. 18.3.
Some audit components write their audit data directly to files (see ‘Applica-
tion 2’ writing to ‘App.-Audit’ and ‘Packet-Audit’ writing to ‘Net-Audit’ in
Fig. 18.3). The straightforward solution to pseudonymize this audit data is to
configure the system, such that the audit component writes the audit data to a
named pipe, which a pseudonymizer reads simultaneously (see ‘P’ next to ‘App.-
Audit’ and ‘Net.-Audit’ in Fig. 18.3). Also, archived audit data can be piped
into pseudonymizers in order to be pseudonymized.
In some cases it might be useful to redirect the audit data of an audit com-
ponent to an audit service, instead of writing it directly to a file. An example
use is consolidating certain audit data in a single place. This can be achieved by
configuring the system, such that the audit components write the audit data to a

18.3 Embedding Audit Data Pseudonymizers 145

pseudonymizer

Application 1

auditd

Application 2

Kernel Interface

OS−Kernel

BSM Audit Module

Process− Memory− File−
System

Packet−Audit

Network−
Interfaces

Network

P

R P

R
W

W

W

W
W W

PR alternative
redirector
pseudonymizing wrapper

P

syslogd

Management Management

ASCII audit data

Host−Audit Host−Audit App.−Audit Accounting Net−Audit

P

P

P

P

Fig. 18.3. Pseudonymizing Solaris audit data

named pipe, each. A redirector can pick up the audit data from the pipe1 and de-
posit it e.g. at syslogd by means of the syslog API (see ‘R’ next to ‘App.-Audit’
and ‘Net-Audit’ in Fig. 18.3).
Finally, pseudonymizers can be integrated with the syslog audit service at three
different levels. First, wrappers can intercept and pseudonymize the audit data
before it is processed by syslogd, while syslogd is configured to receive the
pseudonymized audit records from the wrapper (see ‘W’ above syslogd in
Fig. 18.3). Second, pseudonymization can be embedded within syslogd, either
by patching the source code of the native syslogd of the system, or by replac-
ing the native syslogd of the system with another system’s patched version of
syslogd (see ‘P’ within syslogd in Fig. 18.3). Third, syslogd can be configured
to write the processed audit data into named pipes that are simultaneously read
by pseudonymizers (see ‘P’ below syslogd in Fig. 18.3). The three architectures
implementing pseudonymization on the three levels are described and discussed
in Sect. 19.4.

1 In case an application executes accesses on its audit data files beyond appending
audit records, the redirector could only be used by indirection via files. Those files
shouldn’t be pruned while the application might revisit old content.

19

Instantiating the Set-based Approach
for Syslog-style Audit Data

In this Chapter the set-based approach from Part II is instantiated for ASCII
format audit data in Unix systems as proposed in Sect. 17.2. Sect. 19.1 shows
how the treatment of abstract events can be instantiated for ASCII format audit
records. Sect. 19.2 presents how the pseudonymity-layer data for pseudonym dis-
closure is embedded in application-layer ASCII format audit records. The trust
model in use is described in Sect. 19.3. In Sect. 19.4 we briefly introduce the
components of the architecture we design for the implementation of the pseu-
donymizer embeddings identified in Sect. 18.3. Chapter 20 describes the toolset
Pseudo/CoRe, which implements the set-based approach for ASCII format audit
data. Except for the specializations made for the application for ASCII format
audit data, the approach works as described in Part II.
The set-based approach is formulated for the more general ASCII format
audit records, and Sect. 19.4.2 describes how these audit records can be
pseudonymized. As motivated in Chap. 18, syslog-style audit data is the most
frequently occurring kind of ASCII format audit data. Hence, the design of
the architecture is focused on the pseudonymization of syslog-style audit data.
Sect. 19.4.1 describes in more detail, how the approach integrates with existing
syslog-style audit data environments, while maintaining the trust model. Conse-
quently, for the examples in this Chapter we use syslog-style audit records.

19.1 Locating Identifying Features in Application-layer
Data

ASCII format audit records contain events, which can be regarded as a refinement
of the abstract events defined in Sect. 12.1.1. In the following, we mean ASCII
format audit records or syslog-style audit records when using the term audit
record. We denote events contained in these audit records simply as events. When
describing concepts on the conceptual level, we refer to abstract events.

148 19 Instantiating the Set-based Approach for Syslog Audit Data

In Part II the set-based approach has been described in terms of observations
based on abstract events (see Sect. 12.1.1). To instantiate the approach for ASCII
format audit records, the concepts tied syntactically to abstract events need to
be mapped to the same concepts being expressed syntactically in ASCII format
audit records.
Summarizing from Sect. 12.1.1, an abstract event comprises an event designator
(see frame 1 in Fig. 12.1), an event type (see frame 2 in Fig. 12.1) and an arbitrary
number of pairs of feature designators (see frames 3, 5 and 7 in Fig. 12.1) and
features (see frames 4, 6 and 8 in Fig. 12.1). For events contained in syslog-
style audit records the event designator is composed of an optional priority, a
time stamp, a host and an optional process ID field (see ‘PRI’, ‘TS’, ‘H’ and
‘PID’ in Fig. 18.2). In these audit records the event type is encoded in the audit
component field and in the message content (see ‘AC’ and ‘MSG’ in Fig. 18.2),
whereas the feature designators and the features are encoded in the message
content only (see ‘MSG’ in Fig. 18.2).
The syntactical concepts in (abstract) events that are actually used by the
set-based approach from Part II are features of a certain feature type, where
the feature type is composed of the event type and a feature designator (see
Sect. 12.1.1). That is, an implementation of our approach needs to recognize the
following syntactical concepts contained in audit records: event types, feature
designators, features.
The abstract events defined in Sect. 12.1.1 are reasonably well-formed, such that
the relevant syntactical concepts can be easily identified. This is not in general
the case for ASCII format audit records, because the syntax of the audit records
is primarily determined by the originating audit component (see Sect. 18.2.1).
Thus, the recognition of event types, feature designators and features is based
on the evaluation of contextual data, e.g. by means of regular expressions for
pattern matching, as defined in the POSIX standard 1003.2 Sect. 2.8.
The audit record in Fig. 19.1 is used as an example to show how the recognition
of the relevant syntactical concepts works for ASCII format audit records. For
the sake of brevity we omitted the priority, time stamp and host fields in Fig. 19.1
(see ‘PRI’, ‘TS’ and ‘H’ in Fig. 18.2).

su[131337]: pam_authenticate: Authentication failure 2 pts/14 3 4 deedee 5 - 6 root 7 ←↩ 8

Fig. 19.1. Syntactical concepts in a sample syslog audit record

The event type is usually defined by the name of the audit component (see
frame 1 in Fig. 19.1) and parts of the static content of the audit record (see
frame 2 in Fig. 19.1). Thus, the event type corresponding to the string ‘loginfail’
in frame 2 in Fig. 12.1 can be recognized using a regular expression matching
both, frame 1 and frame 2 in Fig. 19.1. Often, the feature designators are not

19.2 Generating Pseudonymity-layer Data for Pseudonym Disclosure 149

given explicitly in ASCII format audit records. In general, feature designators
can be recognized by matching the static contextual content to the left and to
the right of the respective features. Accordingly, the feature corresponding to a
feature designator is defined as the data surrounded by the feature designator.
For example, the feature designator corresponding to the string ‘usr’ in frame 3
in Fig. 12.1 can be recognized using one regular expression that matches frame 4
in Fig. 19.1 and one regular expression that matches frame 6 in Fig. 19.1. Then,
the feature corresponding to the string ‘deedee’ in frame 4 in Fig. 12.1 is found
between frame 4 and frame 6, i.e. in frame 5 in Fig. 19.1. The complete mapping
of the relevant syntactical concepts in the example events in Fig. 12.1 and in
Fig. 19.1 is given in Table 19.1.

Table 19.1. Mapping of the syntactical concepts of observations from the abstract
event in Fig. 12.1 to the same concepts contained in the syslog-style event in Fig. 19.1

syntactical
concept

concept
instance in
Fig. 12.1

frame numbers
abstract event event
in Fig. 12.1 in Fig. 19.1

event type loginfail 2 1, 2
feature designator usr 3 4, 6
feature deedee 4 5
feature designator acct 5 6, 8
feature root 6 7
feature designator term 7 2, 4
feature pts/14 8 3

The decision tree described in Sect. 12.3 can be adapted to store the regular
expressions needed to recognize event types and feature designators. As described
in Sect. 12.3, features are located in an audit record firstly by matching the event
type and then by matching the feature designators. For each matched feature
designator the corresponding feature is the string between the data matched by
the two regular expressions of the feature designator.

19.2 Generating Pseudonymity-layer Data for Pseudonym
Disclosure

In Chap. 11 we assumed that the format of the application-layer audit records
is application-specific and rigid. Therefore, additional data that we need to pro-
vide with each pseudonym, e.g. data needed for pseudonym disclosure, cannot
be embedded in the pseudonymized application-layer audit records. For provid-
ing additional data with the pseudonyms embedded in the application-layer, the
pseudonymity-layer was introduced as a solution in Sect. 13.1. Conceptually, the

150 19 Instantiating the Set-based Approach for Syslog Audit Data

pseudonymity-layer and the application-layer are two separate streams of inter-
related data. For practical reasons both streams shall be multiplexed suitably
and the pseudonymity-layer data shall be wrapped appropriately, such that it
can be embedded in the application-layer data stream. Accordingly, the dashed
arrows in Fig. 19.4 signify the flow of the application-layer data and of the
pseudonymity-layer data in one multiplexed stream, where the pseudonymity-
layer audit records are located close to the corresponding application-layer audit
records. Note, that due to the extension in Sect. 16.3 the pseudonymity-layer
data includes the pseudonym mapping.
Figure 19.3 shows the pseudonymized audit record from Fig. 19.2 together with
the respective pseudonymity-layer data. For the sake of presentation we num-
bered the audit records and omitted the priority field (see ‘PRI’ in Fig. 18.2).
In order to embed the pseudonymity-layer data in the application-layer, it is
wrapped and encoded, such that it syntactically conforms to the current ASCII
format audit data in the application-layer. The format to be used for the audit
record header (see frame 1 in Fig. 19.3) can be configured to mimic the format of
the application-layer audit record headers (see Sect. 20.3). The facility, severity
and additional options processed by syslogd can also be adjusted, such that
the pseudonymity-layer data is ignored by the application (see (4) in Sect. 20.3).
The actual pseudonymity-layer data is encoded in ASCII format and appended
to the audit record header.
The sample audit record in Fig. 19.2 contains several identifying features, but
for the example only the feature deedee shall be pseudonymized (see frame
1 in Fig. 19.2). Generally, application-layer audit records may contain several
identifying features that need to be replaced by pseudonyms, such that after
pseudonymization, an application-layer audit record contains one or more pseu-
donyms. The pseudonymity-layer data for each pseudonym in a given disclo-
sure context is stored in a separate audit record. As an example, consider an
application-layer audit record containing three pseudonyms of which one is as-
sociated with two disclosure contexts. Then, four audit records are generated,
containing the respective pseudonymity-layer data required for pseudonym dis-
closure.
The pseudonymity-layer data stored in an audit record for a given pseudonym in
the pseudonymized application-layer audit record contains the following fields.
For the linkage between the pseudonymity-layer data and the application-layer
data an identifier z (see frame 2 in Fig. 19.3) is introduced, which is the same for
all pseudonymity-layer audit records for the pseudonyms of a given application-
layer audit record (see Sect. 19.2.1). Also for the linkage, the identifier z is fol-
lowed by the pseudonym ni that is associated with the following fields (cf. frame
3 and frame 14 in Fig. 19.3). The identifier of the disclosure context associates
the information in the following fields with a disclosure context I (see frame 4
Fig. 19.3, cf. Sect. 12.3). For the reconstruction of the pseudonym mapping and
eventually for the disclosure of the encrypted identifying feature is the linkability

19.2 Generating Pseudonymity-layer Data for Pseudonym Disclosure 151

Oc
t
31

03
:1
3:
37

po
ny

su
[3
13
37
]:

pa
m_
au
th
en
ti
ca
te
:

Au
th
en
ti
ca
ti
on

fa
il
ur
e
pt
s/
14

de
ed
ee

1 -
ro
ot

F
ig

.
19

.2
.

A
sa

m
pl

e
sy

slo
g

au
di

t
re

co
rd

1
Oc

t
31

03
:1

3:
37

po
ny

ps
eu

do
ny

mi
ze

r:
1
re

f=
10

76
08

37
76

2
ny

m=
W4

w4
dO

I9
3

co
nt

ex
t=

lo
gi

n
4

la
be

l=
99

4a
Y5

PB
gQ

5

es
cr

ow
=l

fI
Fn

e5
Y5

Bb
zt

qP
ht

i8
00

Q
6

re
co

ve
ry

=
zj

Xv
kR

_r
tm

HX
IM

gg
FU

Qb
4g

7
:
1

8
:
T1

np
hy

UO
hz

BI
mu

Rp
!r

Mc
tW

xl
hL

Y
9
:
UK

VD
mA

10

2
Oc

t
31

03
:1

3:
37

po
ny

ps
eu

do
ny

mi
ze

r:
re

f=
10

76
08

37
76

11
ny

me
ve

nt
=f

3s
JQ

TT
Ae

Ln
ao

oq
L0

oQ
nH

yO
Oe

IY
12

or
ig

ev
en

t=
Ns

zD
3_

jG
GZ

gl
iA

Z3
IO

tL
EE

85
g9

M
13

3
Oc

t
31

03
:1

3:
37

po
ny

su
[3

13
37

]:
pa

m_
au

th
en

ti
ca

te
:
Au

th
en

ti
ca

ti
on

fa
il

ur
e
pt

s/
14

W4
w4

dO
I9

14
-r

oo
t

F
ig

.
19

.3
.

Sa
m

pl
e

ps
eu

do
ny

m
iz

ed
sy

slo
g

au
di

t
re

co
rd

w
ith

ps
eu

do
ny

m
ity

-la
ye

r
da

ta

152 19 Instantiating the Set-based Approach for Syslog Audit Data

label li included (see frame 5 Fig. 19.3, Sect. 15.3 and Sect. 16.3).1 The pseudo-
nym disclosure subject to organizational purpose binding is enabled by the field
containing the escrow data co,i (see frame 6 in Fig. 19.3 and Sect. 16.6.2).2 The
pseudonym disclosure subject to technical purpose binding is supported by the
following recovery data. Summarized, the pseudonymity-layer data for pseudo-
nym disclosure comprises:

〈z, ni, I, li, co,i, recovery data〉
The recovery data for pseudonym disclosure subject to technical purpose binding
contains the shares ri,mi

(see frame 7 and frame 8 in Fig. 19.3 for pi(x) and x,
respectively; see also Sect. 15.2) as well as the corresponding verifiers di,mi

(see
frame 9 and frame 10 in Fig. 19.3 for H(drand, si) and drand, respectively; see
also Sect. 14.3.1).3 Summarized, the recovery data comprises one or more pairs
of:

〈〈pi(x), x〉, 〈H(drand, si), drand〉〉
Note, that we avoid mismatches using linkability labels, such that the verifiers
actually are not necessary. The verifiers nevertheless are used to verify that the
implementation works as expected. Our implementation checks the verifier for
each share to detect faulty recoveries of the secret si.
The pseudonymity-layer records need to be tied to the pseudonyms in
application-layer records for which they provide information. Section 19.2.1 de-
scribes, how this can be done.

19.2.1 Linkage between Pseudonymity-Layer and Application-Layer

The audit records described above contain the pseudonymity-layer data required
for pseudonym disclosure. All pseudonymity-layer audit records, providing infor-
mation for the disclosure of pseudonyms in a given application-layer audit record
are linked to this application-layer audit record by a linkage contained in an ad-
ditional pseudonymity-layer audit record.
The linkage audit record (see line 2 in Fig. 19.3) contains the identifier z (see
frame 11 in Fig. 19.3), a message digest H(b) (see frame 13 in Fig. 19.3) of the
original application-layer audit record b (e.g. the sample audit record in Fig. 19.2)
and a message digest H(bp) (see frame 12 in Fig. 19.3) of the pseudonymized
application-layer audit record bp (e.g. the pseudonymized sample audit record in
line 3 in Fig. 19.3):

〈z,H(bp),H(b)〉
The identifier z (see frame 11 in Fig. 19.3) is used to bind all pseudonymity-layer
records together, which provide information for the disclosure of pseudonyms
in the application-layer audit record bp, and that therefore contain the same
1 The linkability label is encoded using an adapted Base64 algorithm.
2 The escrow data is encoded using an adapted Base64 algorithm.
3 The shares and the verifiers are encoded using an adapted Base64 algorithm.

19.3 Trust Model and Related Aspects 153

identifier z (see frame 2 in Fig. 19.3). The message digest H(b) (see frame 13 in
Fig. 19.3) of the original application-layer audit record is not strictly necessary,
but it can be used to verify that the implementation works as expected. Our
implementation compares H(b) against the message digest of the audit record
after complete reidentification in order to detect faulty reidentifications.
Finally, H(bp) (see frame 12 in Fig. 19.3) is used to bind the pseudonymity-layer
audit records to the pseudonymized application-layer audit record bp. Together
with a given pseudonym ni from the application-layer audit record bp (see frame
14 in Fig. 19.3) is H(bp) a unique search criterion to locate the corresponding
entry in the (partially) reconstructed pseudonym mapping in the disclosure con-
text I.4 Note, that it is important that the pseudonyms for different pseudonym
mapping entries in a given audit record differ. This is ensured by the pseudony-
mizer. Also note, that the linkability labels from the pseudonymity-layer data are
used to reconstruct the pseudonym mapping, but the entries in I corresponding
to the pseudonyms to be disclosed are located using only information available
in the pseudonymized application-layer audit records, i.e. the pseudonyms and
the message digest H(bp) (see Sect. 15.3).

19.3 Trust Model and Related Aspects

The architectures for embedding pseudonymizers that are developed in Sect. 19.4
support the trust model described in Chap. 11. Additionally, the extension from
Sect. 16.3 is used, such that we have a trust model as depicted in Fig. 19.4.

user

analysis
site security

officer

audit component

service

pseudonymizer reidentifier

Fig. 19.4. Trust and control in the architectural model of the approach applied to
Unix audit data (see Fig. 16.2)

Here, the more practically inclined trust aspects of audit data pseudonymization
need to be considered. According to the specific audit data pseudonymization

4 The message digest alone is not a sufficient search criterion, because a given audit
record may contain several pseudonyms in I. Also the pseudonym alone is not a
sufficient search criterion, because the same pseudonym may be used for different
entries in the pseudonym mapping of I, then occurring in different audit records.
This might happen, if the configuration only allows strongly restricted name spaces
for these pseudonyms (see Sect. 20.3).

154 19 Instantiating the Set-based Approach for Syslog Audit Data

requirements, audit records should be pseudonymized on the fly on the physical
component where they are generated, and they should be securely transferred as
soon as possible to the audit data analysis component (see Sect. 10.1). This may
not be possible in some situations, e.g. when consolidating audit data generated
by routers or Windows driven systems as is proposed in Sect. 17.2. In such cases
additional measures must be taken to provide a secure channel between the audit
component and the pseudonymizer (see Sect. 18.2).
The performance requirements from Sect. 10.1 also imply the use of crypto-
graphic primitives with a low computational complexity and delay. While our
approach already considers these requirements (see Chap. 11), the cryptographic
primitives used for the implementation of the architectures shall be suitable to
keep up with the audit data volume in practice. Hence, for encryption and de-
cryption we use a symmetric cryptosystem, such that ki = k̃i. Accordingly, for
organizational purpose binding we use the solution from Sect. 16.6.2, which also
uses a symmetric cryptosystem. Note, that Fig. 19.4 depicts only the control re-
quirements for pseudonym disclosure subject to technical purpose binding. While
the implementation presented in Chap. 20 is prepared for pseudonym disclosure
subject to organizational purpose binding, the respective reidentifier has not
been implemented. The control requirements of such a reidentifier must comply
with Fig. 8.6a, irrespective of the control requirements for pseudonym disclosure
subject to technical purpose binding depicted in Fig. 19.4.
The choice of the pseudonymization techniques and the performance of the im-
plementation of the cryptographic primitives used are evaluated in Part IV.
Also for performance reasons, the more practical approach for mismatch avoid-
ance using linkability labels is favored over the approach for mismatch detection
using verifiers (see Sect. 14.3).

19.4 Architecture

The architectures proposed in the following are based on several software com-
ponents. In a nutshell, the redirector can be used to redirect local audit data
to the local syslogd, the rlogger transfers local audit data to a remote syslogd
and the wrapper intercepts audit data before it is read by the local syslogd.
Using these tools, audit data can be redirected or fed into the pseudonymizer
to be pseudonymized. Conversely, the reidentifier can be used to disclose the
pseudonyms in pseudonymized audit data, subject to purpose binding.
The shared and the combined provide the cryptographic primitives for the
pseudonymizer and the reidentifier, respectively. The shared may run on
the same machine as the pseudonymizer, or it may run remotely. This allows
several distributed pseudonymizers to use a central shared with the result that
the linkability labels for a given identifying feature are linkable across the cor-
responding distributed audit components. The protocol used for communication

19.4 Architecture 155

between the pseudonymizer and shared transfers identifiable features. Since
the privacy protection official (PPO) might not control the network between the
pseudonymizer and the shared, the channel is protected by means of encryption,
if shared runs remotely.
The combined may run on the same machine as the reidentifier, or it may
run remotely. The protocol used for communication between the reidentifier
and combined transfers identifiable features. Since identifiable features are trans-
ferred only if a disclosure condition is satisfied, i.e. the site security officer (SSO)
is allowed to see the features, there is no need for a channel providing confiden-
tiality.5

The software components of the architecture were only briefly mentioned above.
For more details on the functionality of the various components refer to
Sect. 20.4.

19.4.1 Pseudonymizing Syslog Audit Data

Pseudonymizers can be integrated with the syslog audit service at three differ-
ent levels (see ‘W’ above syslogd, ‘P’ within syslogd and ‘P’ below syslogd
in Fig. 18.3). The three corresponding system architectures are depicted in
Fig. 19.5.
While the domain controlled by the privacy protection official (‘PPO domain’)
in Fig. 19.5 corresponds to the left hand part of Fig. 19.4, the domain con-
trolled by the site security officer (‘SSO domain’) in Fig. 19.5 corresponds to
the right hand part of Fig. 19.4. More specifically, the audit data is collected
by the audit component in the PPO domain and after pseudonymization it is
transferred to a syslogd on a remote machine in the SSO domain, where it is
written to a file (‘pseudonymized audit data’). That is, the audit components, the
redirector, the wrapper, the rlogger, the local syslogd, the pseudonymizer
and the shared are controlled by the PPO. Conversely, the remote syslogd re-
ceiving the pseudonymized audit records as well as the reidentifier and the
combined are controlled by the SSO.
It is noteworthy that, using the architectures in Fig. 19.5, audit data is written
to files only after it has been pseudonymized. As a consequence of using the
extension from Sect. 16.3 and of embedding the pseudonymity-layer data in the
application-layer the pseudonymized audit data comprises the application-layer
as well as the pseudonymity-layer, including the protected pseudonym mapping
(see Sect. 19.2). The pseudonymous audit data can be analyzed and, if necessary,
reidentified (see the reidentifier in Fig. 19.5). Note, that the service and the
analysis component from Fig. 19.4 are not shown in Fig. 19.5.

5 If the SSO does not control the network between the combined and the reidentifier
a confidential channel should be provided.

156 19 Instantiating the Set-based Approach for Syslog Audit Data

shared

syslogdaudit component

wrapper

pseudonymizer

PPO domain

reidentifier combined

syslogd

SSO domain

pseudonymized
audit data

audit data
reidentified

(a) Wrapper

shared

audit component syslogd
patched

pseudonymizer

PPO domain

reidentifier combined

syslogd

SSO domain

audit data
reidentified

pseudonymized
audit data

(b) Patch

identifiable and pseudonymized features

identifiable features

pseudonymized features
SSL−protected communication

open communication

shared

audit component syslogd

pseudonymizer

PPO domain

reidentifier combined

syslogd

SSO domain

pseudonymized
audit data

audit data
reidentified

(c) Pipes

Fig. 19.5. Architectures integrating pseudonymization with syslog

19.4 Architecture 157

On the first level, the syslogd in the PPO domain can be configured to write
the collected audit data into named pipes, which simultaneously are being read
by pseudonymizers (see ‘P’ below syslogd in Fig. 18.3). The respective system
architecture is shown in Fig. 19.5c. In this architecture the pseudonymized au-
dit data is not handed back to syslogd. The pseudonymized audit data can be
transferred to the remote syslogd in the SSO domain by means of an additional
program named rlogger (not shown in Fig. 19.5). This architecture has two
drawbacks. First, since the audit data is read from a named pipe, the priority
field is not available in the audit records (see Sect. 18.2.3). Instead, rlogger
prepends a configurable fixed priority to each audit record, before transferring
it to the remote syslogd. In order to retain the original priorities, a respective
number of named pipes, pseudonymizers and rloggers need to be used. Second,
syslogd merges subsequent identical audit records into a summarizing audit
record, such that the original audit records cannot be pseudonymized individu-
ally. It is therefore recommended to embed pseudonymizers in a way that they
can access the individual audit records and their priority fields, as in the next
two architectures.
On the second level, syslogd may directly call the pseudonymizer for each audit
record it processes (see ‘P’ within syslogd in Fig. 18.3 and the corresponding
architecture in Fig. 19.5b). The native syslogd of the system can be patched
or replaced by a patched version of another system’s syslogd. The downside
of this architecture is the required availability of either the source code of the
system, or of a patched syslogd with the same functionality and interfaces like
the native syslogd.
On the third level, a wrapper can be used to intercept and pseudonymize audit
records before they are read by syslogd (see ‘W’ above syslogd in Fig. 18.3
and the respective architecture in Fig. 19.5a). Locally generated audit records
can be read from /dev/log by the wrapper. Audit data generated by remote
syslogds and coming in on UDP port 514 can be intercepted and redirected
locally to a UDP port read by the wrapper.6 Audit data which the wrapper
cannot intercept, is received via syslogd from a named pipe (see the dotted
arrows in Fig. 19.5a).7 The wrapper calls the pseudonymizer to pseudonymize
each audit record and directs the pseudonymous audit records to syslogd.

19.4.2 Pseudonymizing Non-Syslog ASCII format Audit Data

Some audit components write their audit data directly to files (see ‘Application
2’ writing to ‘App.-Audit’ and ‘Packet-Audit’ writing to ‘Net-Audit’ in Fig. 18.3).
6 This can be implemented by means of UDP port forwarding, redirecting packets that

were originally sent to port 514 to the port where the wrapper listens.
7 For example OpenBSD kernel audit data is written to /dev/klog and cannot be

intercepted, because the native OpenBSD syslogd is hard-coded to read kernel
audit data from /dev/klog and cannot be reconfigured to use another source.

158 19 Instantiating the Set-based Approach for Syslog Audit Data

A straightforward solution to pseudonymize this audit data is to configure the
system, such that the audit component writes the audit data to a named pipe,
which the pseudonymizer reads simultaneously (see ‘P’ next to ‘App.-Audit’
and ‘Net.-Audit’ in Fig. 18.3). Also archived audit data can be piped into the
pseudonymizer in order to be pseudonymized. In both cases, the pseudonymized
audit data is written to a new file by the pseudonymizer.
In some cases it might be useful to redirect the audit data of an audit component
to an audit service, instead of writing it directly to a file. An example use is
consolidating certain audit data in one place. This can be achieved by configuring
the system, such that the audit component writes the audit data to a named pipe.
A redirector can pick up the audit data from the named pipe8 and store it,
e.g. using syslogd by means of the syslog API (see ‘R’ near to ‘App.-Audit’ and
‘Net-Audit’ in Fig. 18.3).
When embedding pseudonymizers, it is important to comply with the trust model
shown in Fig. 19.4. In the following is described how this can be achieved for the
aforementioned cases.
If a given audit component directly feeds the pseudonymizer via a named pipe,
the pseudonymizer can write the pseudonymized audit data into a named pipe
being read by the rlogger. The rlogger transfers the pseudonymized audit
data to a remote syslogd. This set-up is nearly identical to the architecture
in Fig. 19.5c, but the audit component directly sends the audit data to the
pseudonymizer without using the syslogd. When the redirector is used to
consolidate audit data via syslog, an arbitrary architecture from Sect. 19.4.1 can
be used.

8 In case an application executes accesses on its audit data files beyond appending
audit records, the redirector could only be used by indirection via files. Those files
shouldn’t be pruned while the application might revisit old content.

20

Implementation: Pseudo/CoRe

The most commonly occurring and used audit data in Unix systems is ASCII
format audit data, e.g. syslog-style audit data and audit data generated by web
servers (see Sect. 17.2). Our pseudonymization approach can be instantiated
for ASCII format audit data as shown in Chap. 19. By specifically supporting
syslog-style audit data, audit data generated by many sorts of systems can be
pseudonymized in addition to the audit data generated by Unix systems (see
Sect. 17.2).
The architectures proposed in Sect. 19.4 are composed of several software compo-
nents. These components have been implemented and are available as a toolset
for audit data pseudonymization, named Pseudo/CoRe. Using the toolset, we
can convince ourselves that the approach presented in Part II is workable in
practice.
The compatibility of the software and the third-party software used is summa-
rized in Sect. 20.1. Sect. 20.2 describes how the software components can be
embedded in production Unix systems. How the pseudonymization can be con-
figured to meet individual needs is explained in Sect. 20.3. The functionality and
interplay of the main components is outlined in Sect. 20.4.

20.1 Software

The software toolset Pseudo/CoRe (Pseudonymization with Conditional
Reidentification) comprises several software components: The pseudonymizer
together with the shared perform the pseudonymization of audit data. The
reidentifier together with the combined can be used to reidentify pseudony-
mous audit data. Finally, the wrapper, the redirector and the rlogger are
used to weave the pseudonymizer into the audit data stream.
The shared and the combined provide the cryptographic primitives for the
pseudonymizer and the reidentifier, respectively. For symmetric encryption

160 20 Implementation: Pseudo/CoRe

and decryption the Blowfish algorithm is used and for cryptographic message di-
gesting the SHA1 scheme is used, both from the OpenSSL crypto library [166].1
Shamir’s threshold scheme for secret sharing (see Sect. 15.2) and the Lagrange
interpolation (see Sect. 15.3) are implemented using the GNU Multiple Preci-
sion arithmetic library (GMP) [108]. The extension in Sect. 16.5 is implemented
using Shoup’s Number Theory Library (NTL) [201]. The channel between the
pseudonymizer and the shared is protected using the OpenSSL SSL/TLS li-
brary [167] when shared runs remotely (see Sect. 19.4).
Pseudo/CoRe implements the extensions from Sect. 16.3, Sect. 16.4, Sect. 16.5
and Sect. 16.62. The pseudonymizer can be used on the fly and for batch
processing, whereas the reidentifier can only be used for batch processing
(see Sect. 15.3.1).
The source code of Pseudo/CoRe is written in portable C. The toolset has been
used successfully on Solaris, OpenBSD and Linux operating systems. Hardware
platforms tested were customary Intel Pentium personal computers and Laptops,
Sun Ultra-SPARC workstations, as well as a Compaq iPAQ 3800 personal digi-
tal assistant (PDA) handheld computer running Linux. Note, that the resource
requirements of Pseudo/CoRe in CPU time and memory were sufficiently low,
such that it is usable on an off-the-shelf PDA.
The software toolset Pseudo/CoRe is available under the terms of the
GNU General Public License (version 2) as published by the Free Soft-
ware Foundation. Pseudo/CoRe can be downloaded from the Internet:
http://ls6-www.cs.uni-dortmund.de/pseudocore/
or
http://pseudocore.sourceforge.net/

20.2 Deployment

The deployment of Pseudo/CoRe is briefly described here for the three archi-
tectures described in Sect. 19.4.1 and depicted in Fig. 19.5. These architectures
require the separation of the domains that are controlled by either the PPO or
the SSO. This separation of control domains originates from the trust model
from Sect. 19.3 and shown in Fig. 19.4. For the validity of the approach it is im-
portant to enforce the separation of control domains. In practice this is done by
1 Blowfish and SHA1 were chosen historically and may not be appropriate choices in

the future. Note, that the implementation can be easily adapted to use algorithms
such as the Advanced Encryption Standard (AES) instead of Blowfish and other
hash functions instead of SHA1, as soon as they are implemented in the OpenSSL
crypto library.

2 The pseudonymizer provides the escrow data in the pseudonymity-layer as described
in Sect. 19.2. Tools that make use of the escrow data, in order to disclose pseudonyms
subject to organizational purpose binding, have not yet been implemented.

20.2 Deployment 161

using distinct machines in domains controlled by different parties and by making
proper use of the access control and authentication facilities of these machines.
The machines in the SSO domain should be configured such that the SSOs have
full control over the machines. The machines in the PPO domain must be con-
figured such that exclusively the PPO can control the audit components, the
Pseudo/CoRe components and the audit data being generated. The PPO must
configure the audit components and the Pseudo/CoRe components, such that
the agreed balance of user requirements for pseudonymity and the SSO require-
ments for disclosure are met. That is, the PPO controls, which kinds of audit
data will be generated by the audit components, which types of features will be
pseudonymized and under which disclosure conditions the pseudonyms can be
disclosed. The PPO additionally uses the access control facilities of the machine
to ensure that no audit data is visible to other parties on the machine or is trans-
ferred to remote machines, before it has been processed by the pseudonymizer.
In fact, when properly implementing the architectures from Sect. 19.4.1, audit
data is not written to any disk file, before it is pseudonymized and transferred
to the SSO domain.
Before setting up any components of Pseudo/CoRe, the PPO chooses a suitable
pseudonymization architecture for each of the machines in his control domain
(see Sect. 19.4.1). Depending on the chosen architecture, the pseudonymizer is
embedded in the audit data stream either by wrapping the input channels of
syslogd using the wrapper (see Fig. 19.5a), by replacing the native syslogd
with a patched version (see Fig. 19.5b) or by configuring the syslogd to write
into named pipes being read by the pseudonymizer and by forwarding the
pseudonymized audit data to the SSO domain by means of the rlogger (see
Fig. 19.5c).
The PPO ensures that the wrapper, the pseudonymizer, the shared and the
rlogger start up at system boot time such that they can communicate as re-
quired and can process the syslog-style audit data in background.
There are two alternatives to pseudonymize ASCII format audit data, which
would not be processed by syslogd (see Sect. 19.4.2). First, using the
redirector any ASCII format audit data can be redirected, if it is normally
written to a disk file. The redirector is able to read from a named pipe or
to monitor a log file for recently appended audit records and deposits them us-
ing the syslog API with a fixed priority field specified by the PPO. The result
is that these audit records can be pseudonymized with an arbitrary architec-
ture as described above. Second, the PPO can configure audit components to
write ASCII format audit data into named pipes being simultaneously read by
pseudonymizers. After pseudonymizing the audit data, the pseudonymized audit
data can be forwarded to a remote syslogd using the rlogger.
When implementing these architectures, the syslogd and/or the rlogger(s)
in the PPO domain are configured by the PPO to send the pseudonymized
audit data to one or more remote syslogd(s) in the SSO domain. The remote

162 20 Implementation: Pseudo/CoRe

syslogd(s) in the SSO domain receive(s) the pseudonymized audit data and
process(es) it as configured by the SSO(s). If the SSO(s) wish(es) to be able
to disclose pseudonyms in the pseudonymized audit data some time later, the
syslogd(s) need(s) to be configured to write the pseudonymized audit data to
disk files (see ‘pseudonymized audit data’ in Fig. 19.5).
Under the control of the SSO(s), the reidentifier can be invoked manually
on demand or automatically, if a given event occurs. It is used like a filter to
disclose as many pseudonyms from the pseudonymized audit data as possible.
For the reidentifier to work, a running combined that is controlled by the
SSO(s) needs to be reachable.

20.3 Configuration

After the deployment (see Sect. 20.2) the PPO configures Pseudo/CoRe with a
priori knowledge that is tailored to the given application and which specifies:

1. the syntactical recognition of the feature types in the original application-
layer data that shall be pseudonymized,

2. the application-specific requirements w.r.t. the format and content-
linkability of the pseudonyms to be embedded in the application-layer data,

3. the requirements for pseudonymity-layer data enabling the pseudonym dis-
closure subject to technical and organizational purpose binding, and

4. the application-specific requirements w.r.t. the format of the audit records
for the pseudonymity-layer data.

While 2) and 4) adapt Pseudo/CoRe to the requirements of the given application,
1) and 3) shall express a fair consensus between the interest in pseudonymity
and the interest in accountability. Chapter 11 roughly sketched a process that is
carried out in the real world, and which is suitable to reach such a consensus.
In the following is described, how the a priori knowledge can be expressed by
the PPO using the syntax of the configuration file of Pseudo/CoRe. The various
keywords are merely mentioned in the text.

Ad 1:

To be able to pseudonymize identifying features in ASCII format audit records,
the pseudonymizer requires a specification of the respective feature types, which
are defined by the event types and by the respective feature designators. Such a
specification comprises a syntactical description for the recognition of event types
and features designators. As explained in Sect. 19.1, event types (EVENT) and

20.3 Configuration 163

features designators (LEFT, RIGHT) are recognized by means of regular expressions
for pattern matching.
Using the decision tree at run-time for a given audit record, the pseudonymizer
determines the event type, possibly comprising the name of the audit compo-
nent (see Sect. 19.1). For the current event type the pseudonymizer locates
the feature designators. The feature is extracted from in between the patterns
matched by both regular expressions of the current feature designator. After
extracting a feature, the pseudonymizer replaces it by a pseudonym. Similarly,
the reidentifier locates these pseudonyms in pseudonymized audit records
(see Sect. 12.3).

Ad 2:

To satisfy application-specific requirements, the pseudonyms generated for a
given feature type should retain the format and the content-linkability of the
corresponding features (see Sect. 13.1). The PPO can define a suitable format
for the pseudonyms of a given feature type (TYPE):

• IP address (IP)
• DNS name (DNS)
• positive integer number (INT)
• arbitrary string (STRING)

For pseudonyms in an address format the number of address levels being
pseudonymized can be adjusted by the PPO (IP BITS, DNS LEVELS). Retaining
some address levels of the identifying feature allows for a coarse-grained evalua-
tion of addresses without disclosing the more significant address levels. In order
to avoid the linkability of pseudonyms for numbers or strings w.r.t. their length,
a fixed length can be specified for these pseudonyms (LEN). If the linkability of
these pseudonyms w.r.t. their length is not a problem, the original length of the
identifying features can be retained (KEEPSIZE).
The pseudonyms replacing a given feature in a given disclosure context, but
in different places in the application-layer, can be generated such that they
are either linkable or unlinkable w.r.t. their content (LINK, UNLINK). That is,
for a given feature in a given disclosure context the pseudonymizer uses the
same pseudonym to retain content-linkability, which may be required by the
given application. If the application does not require content-linkability of the
pseudonyms, the pseudonymizer uses strings chosen independently and pseudo-
randomly within the constraints of the specified format. Note, that the content-
linkability of the pseudonyms is specified for the application-layer only. The
pseudonyms in the application-layer are linked to the pseudonymity-layer data

164 20 Implementation: Pseudo/CoRe

by means of the linkage. Since Pseudo/CoRe implements the mismatch avoid-
ance approach from Sect. 14.3.2, the pseudonymity-layer contains linkability la-
bels (see Sect. 19.2), which link all pseudonymity-layer data of a given feature
in a given disclosure context. Hence, considering the linkability labels and the
linkage in the pseudonymity-layer, also the pseudonyms in the application layer
are (transitively) linkable for a given feature in a given disclosure context, ir-
respective of the manually provided settings for application-layer pseudonym
linkability.

Ad 3:

Finally is specified, whether the pseudonyms generated for the current feature
type can be disclosed later on (RECOVER, NORECOVER). If pseudonym disclosure
is not desired for the pseudonyms of a feature type, no pseudonymity-layer data
is generated for these pseudonyms. Hence, there is no controlled way to disclose
these pseudonyms. If pseudonym disclosure is desired, the supported kinds of
purpose binding are specified independently.
See Sect. 16.6 for examples motivating the use of organizational purpose binding.
Enabling or disabling organizational purpose binding controls whether escrow
data is generated in the pseudonymity-layer (ESCROW, NOESCROW).
To enable the disclosure of pseudonyms of the current feature type subject to
technical purpose binding, the feature type is associated with one or more dis-
closure contexts (CONTEXT). For each disclosure context the disclosure condition
is defined (GROUP, THRESHOLD) (see Sect. 12.2).
Also, for each of the disclosure contexts associated with the current feature type,
the contribution of the occurrence of the feature type to the activity level of the
disclosure context is specified in detail. The contribution is influenced by the
significance of repeated occurrences of the current feature for the disclosure sce-
nario (see Sect. 16.4). If each occurrence of the feature is significant, the activity
level of the corresponding disclosure context should be changed each time the
feature occurs (GROW). If it is only relevant that the feature occurred at least
once, the activity level of the corresponding disclosure context should be changed
only the first time the feature occurs (ONCE). The contribution of different fea-
ture types can be differentiated by changing the activity level of the associated
disclosure contexts using different weights (see Sect. 12.2). The occurrence of
observations of activity, i.e. feature types, that corroborate the suspicion that a
certain disclosure scenario is taking place, should increase the activity level of
the corresponding disclosure context (ADDWEIGHT). Conversely, the occurrence of
observations of activity that clear the suspicion that a certain disclosure scenario
is taking place, should decrease the activity level of the corresponding disclosure
context (DELWEIGHT) (see Sect. 16.5). For modeling certain disclosure scenarios
it is useful to lower the activity level of the respective disclosure context not only
if certain observations occur, but also also after a specified time interval after

20.4 Functionality 165

the occurrence of a given event that increased the activity level (TIMEOUT) (see
Sect. 16.5).

Ad 4:

To retain the application-specific requirements with respect to the format of
the audit records, the pseudonymity-layer data is embedded in the application-
layer, such that the pseudonymity-layer audit records mimic the format of the
application-layer audit records. The embedded pseudonymity-layer data is ig-
nored by the given application, but used during reidentification. Each relevant
kind of application-layer audit record is defined separately (STYLEDEF). The for-
mat of the audit record header to be generated by the pseudonymizer for the
pseudonymity-layer audit records must be specified (FORMAT). Conversely, for
the reidentifier to be able to identify and locate the pseudonymity-layer au-
dit records, a regular expression is specified, which matches the generated header
format (SEARCH). Each event type definition is complemented with a reference
to an audit record header format to be used for the pseudonymity-layer data
generated for events of the given type (STYLE).
If the pseudonymizer is deployed as shown in Fig. 19.5a or Fig. 19.5b, the
pseudonymity-layer audit records are handed back to the (patched) syslogd to-
gether with the pseudonymized application-layer audit records. While the prior-
ity field of the application-layer audit records is retained by the pseudonymizer,
the newly generated pseudonymity-layer audit records need to be supplied with
an own priority by the pseudonymizer. Accordingly, the facility and the severity
must be specified for the pseudonymity-layer audit records along with additional
optional syslog options (LOGFACILITY, LOGLEVEL, LOGOPTION). The header for-
mat and the priority should be specified such that the pseudonymity-layer records
are ignored by the given application.

20.4 Functionality

The processes of pseudonymization and of reidentification are described here
in some detail, assuming that the pseudonymizer and the reidentifier are
properly weaved into the audit data stream. For details on how the audit data
is intercepted and fed into the pseudonymizer and into the reidentifier, and
on how it is forwarded after processing, refer to Sect. 19.4 and Sect. 20.2.
After the deployment of Pseudo/CoRe, the pseudonymizer is weaved into the
audit data stream, such that it is sequentially fed with audit records. It examines
each incoming audit record according to the configured a priori knowledge about
(see Sect. 20.3):

• feature types that need to be pseudonymized (see Sect. 12.2),

166 20 Implementation: Pseudo/CoRe

• application-specific requirements w.r.t. the format and the content-linkability
of the features as well as the pseudonyms (see Sect. 13.1),

• the possibility for pseudonym disclosure, subject to:
technical purpose binding

with set-based models of disclosure scenarios, which comprise:
– disclosure contexts and disclosure conditions (see Sect. 12.2),
– the significance of repeated occurrences of observations (see

Sect. 16.4), and
– the weights of feature types (see Sect. 12.2), using negative weights to

model the effect of activities canceling out each other (see Sect. 16.5).
organizational purpose binding

cryptographically enforcing the organizational cooperation of the PPO
and the SSOs (see Sect. 16.6),

• the application-specific requirements w.r.t. the format of the audit records
for the pseudonymity-layer data generated to enable pseudonym disclosure
(see Sect. 19.2).

According to the a priori knowledge the pseudonymizer replaces identifying fea-
tures in the application-layer audit data with suitable pseudonyms. It leverages
the a priori knowledge basically provided in the decision tree (see Sect. 12.3).
The syntactical recognition of feature types and the extraction of features are
based on regular expressions for pattern matching that are stored in the decision
tree (see Sect. 19.1). Having extracted a feature that needs to be replaced by a
pseudonym, the pseudonymizer decides on the format and content-linkability of
the feature and replaces it with a suitable pseudonym. Subsequently, the possi-
bilities to disclose this pseudonym are determined. The pseudonymizer supports
pseudonym disclosure subject to technical and organizational purpose binding.
For purpose binding, the pseudonymizer determines the disclosure context of
the current feature type (see Sect. 12.3) and asks the shared to provide appro-
priate data in the pseudonymity-layer for the current feature in the disclosure
context.
The shared manages the pseudonym mapping and it generates the
pseudonymity-layer data required for pseudonym disclosure. From the pseudo-
nym mapping the shared cryptographically generates shares and some additional
data for technical purpose binding (see Sect. 15.2) and/or escrow data for or-
ganizational purpose binding (see Sect. 16.6.2). Then, the shared delivers the
pseudonymity-layer data to the pseudonymizer.
Subsequently, the pseudonymizer provides the linkage of the pseudonymity-
layer data to the current pseudonym in the application-layer (see Sect. 19.2)
and complements the pseudonymity-layer data such that it conforms to the
audit record format, i.e. the pseudonymity-layer data is firstly linked to the

20.4 Functionality 167

pseudonymized audit record and is then embedded in the application-layer. Then,
the pseudonymizer writes the pseudonymized application-layer audit record to-
gether with the corresponding pseudonymity-layer audit records out to the con-
figured output channel. According to the deployment of Pseudo/CoRe in the
PPO domain, these audit records are fed back into the audit data stream, just
behind the point of interception.
At some later point, the pseudonymized audit data is stored in a disk file. Ac-
cording to the deployment of Pseudo/CoRe in the SSO domain, the complete
file or selected pseudonymized audit record can be fed on demand into the
reidentifier. The reidentifier discloses all pseudonyms that are embed-
ded in the input application-layer audit records and that satisfy their respective
disclosure condition (see Sect. 15.3.1).
In the first pass, the reidentifier reconstructs the pseudonym mapping
using all available pseudonymity-layer audit records. More specifically, the
reidentifier uses the linkability labels to associate the labels as well as the cor-
responding shares and linkages with pseudonym mapping entries in the current
disclosure context (see Sect. 15.3).
In the second pass, the reidentifier uses the regular expressions for pat-
tern matching in the decision tree to locate the pseudonyms embedded in each
application-layer audit record (see Sect. 19.1). For each pseudonym, the corre-
sponding pseudonym mapping entry is located in the current disclosure context
by searching for the message digest of the current audit record together with
the pseudonym in the associated linkages (see Sect. 19.2.1). The reidentifier
examines the current pseudonym mapping entry and checks the disclosure condi-
tion for technical purpose binding.3 If the disclosure condition is met, and if the
identifying feature corresponding to the pseudonym has not yet been disclosed,
the reidentifier asks the combined to disclose the identifying feature in the
pseudonym mapping entry.
Given a sufficient amount of compatible shares, the combined cryptographi-
cally discloses the identifying feature from the cryptogram in the correspond-
ing linkability label (see Sect. 15.3) and delivers the identifying feature to the
reidentifier.
The reidentifier stores the identifying feature in the current pseudonym map-
ping entry. Then, the identifying feature in the current pseudonym mapping
entry is used to replace the pseudonym in the application-layer audit record. Fi-
nally, the reidentifier writes the (possibly reidentified) application-layer audit
records out to the configured output channel.

3 The pseudonym disclosure subject to organizational purpose binding has not yet
been implemented. It can be implemented, such that it makes use of the escrow data
provided in the pseudonymity-layer audit records (see Sect. 16.6.2 and Sect. 19.2).

Part IV

Evaluation

In this Part, we informally evaluate the theoretical design of the set-based ap-
proach and of the implementation Pseudo/CoRe from Part II and Part III, re-
spectively. For the evaluation of the designs we use the basic building blocks for
anonymity defined in the APES project. In Chap. 21 we introduce the APES
project and motivate the use of basic building blocks for anonymity. In Chap. 22
we decompose our designs into basic building blocks for anonymity and consider
the remaining building blocks for further improvement. The informal evaluation
indicates that the designs are sound with respect to the given requirements and
that they contain no deficiencies.
We also evaluate the performance of the implemented toolset Pseudo/CoRe.
The performance evaluation in Chap. 23 demonstrates that the implementation
is able to handle real-world audit data volumes in practice.

21

APES:
Anonymity and Privacy in Electronic Services

Section 21.1 provides a brief overview of the related work in the APES project.
In Sect. 21.2 we motivate the APES approach of basic building blocks for ano-
nymity in general and in particular as a vehicle for the evaluation of the designs
from Part II and Part III. The APES approach is described in the necessary
detail in Sect. 21.3 for connection-level and application-level building blocks (see
Sect. 21.3.1 and Sect. 21.3.2, respectively) and for a strategy to compose anony-
mity systems out of building blocks (see Sect. 21.3.3). The basic building blocks
are used in Chap. 22 to informally evaluate our designs from Part II and Part III.

21.1 APES Project Overview

In the APES project (Anonymity and Privacy in Electronic Services) the state of
the art of anonymity systems has been surveyed and studied [199]. Anonymity
systems for various applications are described: anonymous connections, email,
web publishing, web browsing, electronic payment, electronic elections and elec-
tronic auctions. For each application a short overview of its functionality is given
and the entities participating in the application are identified and mapped to
roles as defined by the application independent terminology based on [174]. The
anonymity requirements and properties of each of the applications are described.
For several of the applications exists more than one anonymity system based on
different anonymity techniques. The anonymity techniques themselves are often
composed of several subcomponents that are each responsible for a particular
aspect of anonymity. In the APES project the anonymity systems have been
decomposed into basic building blocks that can be reused for different systems,
with a focus on unconditional anonymity, i.e. the anonymity cannot be revoked,
e.g. by pseudonym disclosure. The basic building blocks are identified, their
properties and requirements are described and their security and correctness are
evaluated in an informal way [62]. These aspects will be described in more detail
in Sect. 21.2.

172 21 APES: Anonymity and Privacy in Electronic Services

An ad-hoc methodology for building block composition is proposed and used to
provide anonymity for two selected applications, which have also been imple-
mented [70]. A more detailed overview of the project is given by Diaz, Claessens
and Preneel [71] and in the project deliverables [199, 62, 70].

21.2 APES Basic Building Blocks for Anonymity

Anonymity systems are often designed with a specific application in mind. Vari-
ous parts of these systems, however, often have similar functionality that can be
reused for other applications. As a part of the APES project De Win et al. [62]
define reusable anonymity building blocks with minimal, yet useful functionality.
This approach has several advantages:

1. Similar building blocks can be compared more easily than the more complex
systems they originate from.

2. Given a list of building blocks with their properties, deficiencies in existing
systems can be identified systematically.

3. Anonymity systems can be designed by systematically composing appropri-
ate building blocks.

We present the APES anonymity building blocks approach in Sect. 21.3 in more
detail. In Chap. 22 we use the APES approach to evaluate the designs from
Part II and Part III by decomposing them into building blocks. In doing so we
pursue the following objectives in accordance to the above advantages:

1. The building blocks used in our design are compared to different building
blocks with similar functionality with the two possible results: The system
design is already composed of building blocks that are optimal for the given
application, or we obtain specific indications how we can improve the design
by replacing some building block with some other building block, yielding
stronger properties.

2. Given the attacker and trust model from Chap. 11 we may identify deficien-
cies in our design in an informal way by considering all building blocks in
the list given by De Win et al. [62].

3. As a side-product, we obtain indications about the completeness of the list
and classifications of APES building blocks with respect to our design.

21.3 APES Design Approach

APES basic building blocks are classified as being specific to the application-
level or the connection-level: Connection-level basic building blocks are used

21.3 Design Approach 173

to provide anonymous communication connections (see Sect. 21.3.1), whereas
application-level basic building blocks are responsible for anonymity aspects of a
given application (see Sect. 21.3.2). To obtain a completely anonymous system,
application-level anonymity often needs to be complemented by connection-level
anonymity.1 Note, that several connection-level building blocks can also be em-
ployed at the application-level. The APES approach comprises a strategy for
composing anonymity systems from basic building blocks (see Sect. 21.3.3).

21.3.1 Connection-level basic building blocks

Basic building blocks at the connection-level hide or remove identifying informa-
tion that is available at that level. Identifying information can occur explicitly
like IP-Addresses in IP packet headers. Connections can also be traced along the
communication path using implicit features of the appearance or of the flow of the
communication. Network packets can be linked by appearance using e.g. content,
format or size. Also, the flow of network packets can be traced using knowledge
about the packet processing regarding e.g. order and timing. Accordingly, APES
basic building blocks at the connection-level either change the appearance or the
flow (see the second column of Table 21.1).
For each basic building block the properties are given informally, such that
building blocks with similar functionality can be compared (cf. the properties
of application-level building blocks in Sect. 21.3.2):

• existential and/or operative requirements,
• attacks that are resisted and those that are still possible,
• performance, i.e. communication overhead, computational and space com-

plexity, as well as message delay,
• parameters influencing the security,
• algorithmic sophistication required for processing, and
• behavior at operational limits.

1 In Chap. 8 we introduced an architectural model for pseudonymous authorizations
and surveillance in order to compare anonymity technologies w.r.t. an attacker re-
stricted to audit data generated by a service. Nevertheless, the model can be used
to describe architectures for pseudonymous authorizations under the assumption of
other attacker models. As an example, consider an attacker that is able to listen to
the communication between a client and a server. Then, for each layer in the OSI
model which provides identifying information (e.g. MAC addresses, IP addresses) an
architecture is required to anonymize authorizations. According to the OSI layers
the respective architectures can be classified as being specific to the application-level
or the connection-level.

174 21 APES: Anonymity and Privacy in Electronic Services

Table 21.1. Basic anonymity building blocks as given and classified by De Win et
al. [62]

building block connection-level application-levelappearance flow
encryption

√ √

padding
√

substitution
√

compression
√

reordering
√

latency
√

dummy activity
√

no replay
√

filtering
√

caching
√

(untraceable) broadcast
√ √

multiplexing
√

bulletin board
√ √

(fair) blind signature
√

group signature
√

threshold cryptosystem
√

multi-party computation
√

homomorphic encryption
√

deniable encryption
√

secret sharing schemes
√

zero-knowledge
√

pseudonyms
√

trusted third party
√

A complete comparison regarding performance is provided by De Win et al. [62].
To provide anonymous connections, explicitly as well as implicitly identifying
information must be hidden. Therefore basic building blocks need to be composed
to change the appearance as well as the flow of the messages.
The following compositions of basic building blocks to so-called local setups are
proposed:

serial: Building blocks are executed after each other, where the input of a block
is the output of the preceding block.

parallel: Functionally unrelated building blocks can be executed simultaneously,
given that at most one building block changes the appearance of the message.

nested: The execution of the outer building block is suspended for the execution
of the inner block. This may be required for advanced message transforma-
tions or block dependencies [62].

21.3 Design Approach 175

A local setup is controlled by one entity of the anonymity system. The single
point of trust failure problem may be solved by serially composing an anonymity
system, also called a global setup, of several identical local setups, which are each
controlled by different entities.

21.3.2 Application-level basic building blocks

Basic building blocks at the application-level conceal or remove identifying in-
formation that is available at this level. They implement techniques that have
been developed to provide anonymity in a particular type of application (see the
third column in Table 21.1).
For each basic building block the properties are given informally (see also the
properties of connection-level building blocks in Sect. 21.3.1):

• existential and/or operative requirements and cryptographic assumptions,
• attacks that are resisted and those that are still possible,
• performance, i.e. computational complexity,
• security,
• verifiability of results,
• trust requirements,
• (un-)conditional anonymity, i.e. ability for controlled anonymity revocation.

De Win et al. found that several building blocks at this level are no basic building
blocks, they rather solve an application-specific anonymity problem by combin-
ing several more elementary building blocks, which do not offer anonymity by
themselves [62]. These more elementary building blocks have not been described.
Also, the functionality of the building blocks at this level is rather different, i.e.
we cannot choose between several alternative building blocks to achieve a spe-
cific functionality. As a result, some building blocks already are complete local
setups and can hardly be locally combined with other building blocks. Never-
theless, anonymity systems can be composed as global setups of such building
blocks, if they are used between different entities or during different phases of
the application.

21.3.3 Composition strategy

In APES the following factors need to be considered for the composition of an
anonymity system out of building blocks:

application: anonymity requirements, attacker model, overall application struc-
ture

176 21 APES: Anonymity and Privacy in Electronic Services

building blocks: properties, dependencies, trade-off of security vs. performance

APES does not provide an algorithm composing anonymity systems from build-
ing blocks, given the above information as input. Instead, in APES a pragmatic
ad-hoc approach is used to compose two example applications, starting out with
a simple attacker model and sketching the composition of the anonymity system.
In each further iteration a slightly stronger attacker is assumed and the com-
posed anonymity system is complemented with building blocks that remove the
enhanced possibilities for attack [70].

22

Evaluating the Design
Using Basic Building Blocks for Anonymity

In this Chapter we use the basic building blocks for anonymity from the APES
project, as introduced in Chap. 21, to evaluate the designs from Part II and
Part III.
In Sect. 22.1 we decompose our designs and map the functionality that is relevant
for certain anonymity aspects to appropriate building blocks from the APES
approach. Having decomposed our designs into building blocks for anonymity,
in Sect. 22.2 we firstly describe the use of each building block in our design, and
we secondly consider the unused building blocks for further improvement of our
design. The findings of this analysis are summarized in Sect. 22.3.
The rather theoretical results from this Chapter are corroborated in Chap. 23
by an empirical performance evaluation of the implementation from Part III.

22.1 Mapping the Design to Building Blocks

In our approach the SSO can observe the behavior of service users merely by
inspecting pseudonymized audit data. That is, we assume that the SSO cannot
monitor the user’s service accesses over the network, i.e., the SSO can only see
where the pseudonymized audit data originates. Since this information needs
not to be protected, there are no connection-level anonymity requirements in
our approach.1

Summarizing the relevant requirements of audit data pseudonymization from
Sect. 10.1, pseudonymization should not use building blocks with a high com-
putational complexity and that introduce a significant delay. As described in
1 If we relax the latter assumption such that the SSO is able to monitor the user’s

service accesses over the network, the SSO can correlate monitored accesses with
pseudonymous audit records. This situation raises the need for connection-level ano-
nymity, which can be implemented independently from our approach, using existing
standard solutions for anonymous connections (see Seys et al. [199]).

178 22 Evaluating the Design Using Basic Building Blocks

Chap. 11 and Sect. 19.3, we have respected this requirement when designing our
approach in Part II and when choosing cryptographic primitives for the imple-
mentation in Part III.
Figure 22.1 shows how our set-based approach can be decomposed into APES
building blocks: Fig. 22.1a shows the conceptual system as described in Part II
and Fig. 22.1b shows the current implementation developed in Part III. In the
following, the description of the pseudonymization process focuses on the basic
building blocks used.
The audit components are configured to generate only audit data required for the
given application (see Sect. 20.2 and the building block ‘filtering’ as well as the
input ‘application-layer audit data’ in Fig. 22.1a/b). The audit data is delivered
to the pseudonymizer, which inspects each incoming audit record for identifying
features that, according to the a priori knowledge, shall be pseudonymized (see
Sect. 12.3 and Sect. 19.1).
Each of these features is replaced by an optionally padded pseudo-random string
that conforms to the application-specific requirements with regard to format and
content-linkability of the feature (see (2) in Sect. 20.3 and the building blocks
‘padding 1’ and ‘substitution’ as well as the input ‘pseudo-random string’ in
Fig. 22.1a/b). These strings are the pseudonyms which are embedded into the
original application-layer audit data.
In the a priori knowledge the ability to disclose these pseudonyms is defined
for each feature type (see (3) in Sect. 20.3). If the ability for disclosure is sup-
ported for a given pseudonym, then the corresponding identifying feature is en-
crypted, i.e. disclosure is the process of recovering the correct decryption key
(see Sect. 15.2 and the building block ‘encryption 1’ as well as the input ‘pseudo-
random key’ in Fig. 22.1a/b).
The pairing of the cryptograms of a given identifying feature together with the
message digest of the corresponding decryption key (verifier), forms a pseudonym
mapping entry (see Sect. 13.2 and the building blocks ‘encryption 1’ and ‘one-
way function 1’ as well as the output ‘pseudonym mapping’ in Fig. 22.1a). Only
a positively verified decryption key can be used to correctly decrypt cryptograms
of the respective identifying feature.
To coarsen the number of actors in the given application, dummy entries are
added to the pseudonym mapping. To avoid the linkability of the pseudonym
mapping entries over time, they are padded and reordered (see Sect. 16.2 and the
building blocks ‘dummy generation’, ‘padding 2’ and ‘reordering’ in Fig. 22.1a).
To avoid the inference of the number of real pseudonym mapping entries based
on the number of pseudonym mapping updates, dummy updates are used, even
if no new entries have been inserted into the pseudonym mapping (see Sect. 16.2
and the building block ‘dummy updates’ in Fig. 22.1a).
Note, that the description of the pseudonym mapping and the respective dummy
activity applies to the conceptual system depicted in Fig. 22.1a, only. The imple-

22.1 Mapping the Design to Building Blocks 179

du
m

m
y

ge
ne

ra
tio

n

su
bs

tit
ut

io
n

fi
lte

ri
ng

pa
dd

in
g

1
pa

dd
in

g
2

se
cr

et
 s

ha
ri

ng
 s

ch
em

es
th

re
sh

ol
d

cr
yp

to
sy

st
em

re
or

de
ri

ng

on
e−

w
ay

 f
un

ct
io

n
1

on
e−

w
ay

 f
un

ct
io

n
2

du
m

m
y

up
da

te
s

en
cr

yp
tio

n
1

ra
nd

om
 s

tr
in

g

ps
eu

do
ny

m
iz

er

ps
eu

do
ny

m
 m

ap
pi

ng
ps

eu
do

ny
m

ity
−

la
ye

r
da

ta

ps
eu

do
−

ap
pl

ic
at

io
n−

la
ye

r
au

di
t d

at
a

ps
eu

do
−

ra
nd

om
 k

ey

ps
eu

do
ny

m
iz

ed
 a

pp
lic

at
io

n−
la

ye
r

au
di

t d
at

a

(a
)

C
on

ce
pt

fr
om

Pa
rt

II

su
bs

tit
ut

io
n

se
cr

et
 s

ha
ri

ng
 s

ch
em

es

pa
dd

in
g

1

fi
lte

ri
ng

en
cr

yp
tio

n
2

en
cr

yp
tio

n
1

ra
nd

om
 s

tr
in

g
ps

eu
do

ny
m

iz
er

ps
eu

do
ny

m
ity

−
la

ye
r

da
ta

 in
cl

ud
in

g
th

e
ps

eu
do

ny
m

 m
ap

pi
ng

ps
eu

do
−

ap
pl

ic
at

io
n−

la
ye

r
au

di
t d

at
a

ps
eu

do
ny

m
iz

ed
 a

pp
lic

at
io

n−
la

ye
r

au
di

t d
at

a

ps
eu

do
−

ra
nd

om
 k

ey

(b
)

Im
pl

em
en

ta
tio

n
fr

om
Pa

rt
II

I

F
ig

.
22

.1
.

D
ec

om
po

si
ng

ou
r

ap
pr

oa
ch

in
to

bu
ild

in
g

bl
oc

ks
ac

co
rd

in
g

to
D

e
W

in
et

al
.[

62
]

180 22 Evaluating the Design Using Basic Building Blocks

mented system Pseudo/CoRe illustrated in Fig. 22.1b differs substantially with
respect to the pseudonym mapping and dummy activity (see below).
The pseudonymity-layer data contains information for pseudonym disclosure.
It is embedded in application-layer audit records with a configurable identifier
signifying a fictitious audit component, such that the application ignores these
records (see Sect. 19.2 and the output ‘pseudonymity-layer data (including the
pseudonym mapping)’ in Fig. 22.1a/b).
To be able to use the pseudonym mapping for pseudonym disclosure, a valid de-
cryption key is required. The recovery of such a key from the pseudonymity-layer
data is subject to technical and/or organizational purpose binding. In the con-
ceptual system the organizational purpose binding is enforced using a threshold
cryptosystem to encrypt the decryption key, such that only eligible sets of persons
can recover it cooperatively (see Sect. 16.6.1 and the building block ‘threshold
cryptosystem’ in Fig. 22.1a). In Pseudo/CoRe the organizational purpose bind-
ing is implemented using a symmetric cryptosystem to enforce that decryption
keys can be recovered in cooperation with the privacy protection official (PPO),
only (see Sect. 16.6.2 and the building block ‘encryption 2’ in Fig. 22.1b).
The technical purpose binding of pseudonym disclosure is enforced using thresh-
old schemes for cryptographic secret sharing to securely split the decryption
key in shares that are provided in the pseudonymity-layer in addition to the
corresponding pseudonymized application-layer audit records, containing obser-
vations of activity that are relevant for pseudonym disclosure (see Sect. 13.3 and
the building block ‘secret sharing schemes’ in Fig. 22.1a/b).
Since the above described shares per se are unlinkable, a tentative key recovered
from an arbitrary set of these shares could just be invalid. In that case the
tentative key does not match any verifier in the pseudonym mapping mapping
(see above and see Sect. 13.2 as well as the building block ‘one-way function
1’ in Fig. 22.1a). Even if the tentative key is valid, it could still represent a
mismatch (see Sect. 14.1). To detect mismatches, each share is provided with an
individual verifier (see Sect. 14.3.1 and the building block ‘one-way function 2’
in Fig. 22.1a).
The conceptual system supports unlinkable pseudonymity-layer data (see
Sect. 14.3.1). Since the computational complexity of selecting unlinkable shares
for the recovery of a valid key discourages practical use, for performance reasons
Pseudo/CoRe uses linkability labels in the pseudonymity-layer (see Sect. 14.3.2).
This basic difference has substantial consequences for the resulting system de-
sign.
First, since the pseudonymity-layer data is linkable in Pseudo/CoRe, it would be
futile trying to conceal the number of actors in the pseudonym mapping. Hence,
the extension from Sect. 16.2 is not implemented in Pseudo/CoRe (note, that
the corresponding building blocks are missing in Fig. 22.1b: ‘dummy generation’,
‘padding 2’, ‘reordering’ and ‘dummy updates’).

22.2 Considering Building Blocks for Improved Design 181

Second, in Pseudo/CoRe the linkability labels are used to avoid mismatches
during the recovery of decryption keys. Therefore it is unnecessary to provide
a verifier with each share to detect mismatches (note, that the building block
‘one-way function 2’ is missing in Fig. 22.1b).2

Third, in Pseudo/CoRe the pseudonym mapping is embedded in the
pseudonymity-layer, using the cryptograms of identifying features as linkabil-
ity labels (see Sect. 16.3 and the output ‘pseudonymity-layer data including the
pseudonym mapping’ in Fig. 22.1b). As a result, the cryptograms are directly
associated with the shares of the corresponding decryption key. Hence, accessing
the cryptograms requires no search in the pseudonym mapping, such that there is
no need for the verifiers in the pseudonym mapping (note, that the corresponding
‘one-way function 1’ building block is missing in Fig. 22.1b).
Our approach provides conditional anonymity, i.e. pseudonym disclosure is en-
abled subject to certain conditions. Thus, the pseudonymization component is
complemented by a reidentification component. While a given application needs
only to take the application-layer data, i.e. the pseudonymized audit data, into
account, the reidentification additionally requires the pseudonymity-layer data
and in the conceptual system also the pseudonym mapping. Our proposed solu-
tion and implementation for the reidentification can be decomposed into build-
ing blocks with analogous results, but does not give any additional insights. We
therefore do not provide the details here.

22.2 Considering Building Blocks for Improved Design

The fourth column of Table 22.1 summarizes the building blocks used in our de-
signs, as identified in Sect. 22.1. Interestingly, though our approach does not aim
at providing connection-level anonymity, it uses many connection-level building
blocks that have not been considered for application-level anonymity in APES
(see the ‘!’ in the third column of Table 22.1). Note, that the building blocks
‘pseudonyms’ and ‘trusted third party’ are not shown in Fig. 22.1. However, the
pseudo-random strings in Fig. 22.1 are the generated pseudonyms and the PPO
controls the pseudonymizer in his function as a trusted third party.
APES primarily aimed at providing building blocks for unconditional anony-
mity. Exceptions are the following building blocks that can be used to provide
conditional anonymity: ‘fair blind signature’, ‘group signature’, ‘threshold cryp-
tosystem’, ‘secret sharing schemes’, ‘pseudonyms’, and ‘trusted third party’ (see
the emphasized building blocks in the first column of Table 22.1). Our approach
provides conditional anonymity and any given building block on this list is either
used by our approach or it could be investigated for further improvement. Note,
that our approach does not use any building blocks for conditional anonymity
that were not defined for APES.
2 Pseudo/CoRe nevertheless implements the share verifiers to detect malfunction.

182 22 Evaluating the Design Using Basic Building Blocks

But, our approach uses a more elementary building block named one-way func-
tion enabling to compare features for equality, while the features are concealed.
A collision-resistant one-way function, e.g. as in our implementation a crypto-
graphic hash function, is used to conceal the features, such that for two given
features fi and fj if h(fi) = h(fj) then with high probability fi = fj [154]. This
functionality has formerly not been identified as a separate APES building block,
yet it is useful in various scenarios for conditional and unconditional anonymity
at the application-level (see the building block ‘one-way function’ in Table 22.1).

Table 22.1. Basic anonymity building blocks used in our approach, ‘building block’ =
conditional anonymity, ‘!’ = classification missing, ‘—’ = building block missing, ‘?’ =
candidate building block for improvement

building block connection-level application-level our approachappearance flow
encryption

√ √ √

padding
√

!
√

substitution
√

!
√

compression
√

reordering
√

!
√

latency
√

?
dummy activity

√
!

√

no replay
√

filtering
√

!
√

caching
√

(untraceable) broadcast
√ √

multiplexing
√

bulletin board
√ √

one-way function — — —
√

(fair) blind signature
√

?
group signature

√
?

threshold cryptosystem
√ √

multi-party computation
√

?
homomorphic encryption

√
?

deniable encryption
√

secret sharing schemes
√ √

zero-knowledge
√

?
pseudonyms

√
? /

√

trusted third party
√ √

For each building block used in our approach we give the anonymity objective to
which it contributes, the aspect (appearance or flow) considered by the building
block (for connection-level building blocks only), as well as the effect of the
building block that contributes to the anonymity objective. The basic building

22.2 Considering Building Blocks for Improved Design 183

blocks are considered in the order of appearance in Table 22.1; for details on
each building block refer to De Win et al. [62]:

encryption: conceal identifying features (appearance) (see ‘encryption 1’ in
Fig. 22.1a/b): avoid linkability by means of the content of identifying fea-
tures;
organizational purpose binding of pseudonym disclosure (appearance) (see
‘encryption 2’ in Fig. 22.1b): allow use of the recovered decryption key only
in cooperation with the PPO

padding: conceal identifying features (appearance) (see ‘padding 1’ in
Fig. 22.1a/b): avoid linkability by means of the size of identifying features;
coarsen the number of actors (appearance) (see ‘padding 2’ in Fig. 22.1a):
avoid linkability by means of the size of the mapping entries

substitution: conceal identifying features (appearance) (see ‘substitution’ in
Fig. 22.1a/b): replace identifying features by persistent, i.e. linkable, or one-
time, i.e. unlinkable, pseudonyms3

reordering: coarsen the number of actors (flow) (see ‘reordering’ in Fig. 22.1a):
avoid linkability by means of the order of the pseudonym mapping entries

dummy activity: coarsen the number of actors (flow) (see ‘dummy generation’
and ‘dummy updates’ in Fig. 22.1a): avoid linkability by means of the number
of pseudonym mapping entries and pseudonym mapping updates

filtering: remove identifying features (flow) (see ‘filtering’ Fig. 22.1a/b):
discard audit records that are not needed by the given application

one-way function: conceal identifying features (appearance) (see ‘one-way func-
tion 1’ and ‘one-way function 2’ in Fig. 22.1a): enable the comparison of
decryption keys with tentative recovered keys while concealing the content
of the decryption keys

threshold cryptosystem: organizational purpose binding of pseudonym disclo-
sure (see ‘threshold cryptosystem’ in Fig. 22.1a): allow eligible sets of indi-
viduals to use the recovered decryption key only cooperatively

secret sharing schemes: technical purpose binding of pseudonym disclosure (see
‘secret sharing schemes’ in Fig. 22.1a/b): allow anyone to recover only de-
cryption keys involved in the transgression of a scheme’s threshold

pseudonyms: conceal identifying features (see ‘pseudo-random string’ in
Fig. 22.1a/b): the pseudonyms replacing the identifying features have the
following properties: unauthenticated, sharing is possible, linkable within
the context of an attack, forgeable

3 Note, that blanking of identifying features is in general not useful, because it may
interfere with legacy applications that rely on the existence of specific features.

184 22 Evaluating the Design Using Basic Building Blocks

trusted third party: conditional anonymity (see the double fat grey frames in
Fig. 8.6a/b, not shown in Fig. 22.1a/b): the PPO can be trusted to properly
configure the system components in the PPO domain (see Fig. 19.5)

In the following, each APES building block that is not used in our approach
is considered for possible improvements of the current solution. A number of
building blocks is identified that could not be applied to the current system:4

compression: items to be concealed either are too small or have too high an
entropy to be compressed

no replay: since the channels between the audit components and the pseudony-
mizer are trusted, there is no need for the detection of audit record replay

caching: since the channels between the audit components and the pseudonymi-
zer are uni-directional there is no responder that would need to be concealed

broadcast: there is no need to conceal the identity of the recipient of the audit
records (given application)

untraceable broadcast: there is no need to conceal the identity of the senders of
the audit records (audit-components)

multiplexing: there is no need to conceal the path of the audit records
bulletin board: see the broadcast building block
blind signature: does not allow for conditional anonymity with technical purpose

binding
deniable encryption: for the current approach there seems to be no application

In the following, a number of building blocks is identified that could be explored
for possible improvement of the current system (see the ‘?’ in the fourth column
of Table 22.1). Note, that except for the ‘latency’ building block these build-
ing blocks are computationally expensive and may not meet the performance
requirements of our application. Also, the ‘latency’ building block may conflict
with stringent time requirements.

latency: could be used instead of dummy pseudonym mapping updates, if many
new pseudonym mapping entries are created in a short time interval

fair blind signature: could be examined to provide technical purpose binding
while reducing the power of the trusted third party

group signature: could be investigated to be used for conditional anonymity
with organizational purpose binding; though, its computational complexity
is much higher than that of threshold cryptosystems [62]

4 For the reasoning to be understood, it is advisable to consult De Win et al. [62].
A more detailed description would duplicate text from De Win et al. [62] without
producing any new results.

22.3 Design Evaluation Results 185

multi-party computation, homomorphic encryption: for certain applications not
only the application-layer audit data may be processed, but also certain prop-
erties of the pseudonymity-layer data may be exploited by the application,
independently of pseudonym disclosure; cryptographic primitives for multi-
party computation and for homomorphic encryption could be examined for
the generation of pseudonymity-layer data that has the desired properties

zero-knowledge: could be explored to provide a proof of validity for pseudonyms
to reduce the power of the trusted third party

pseudonyms: other pseudonym systems could be examined to reduce the power
of the trusted third party while gaining the following additional pseudonym
properties: authenticated, sharing is impossible, unforgeable

22.3 Design Evaluation Results

We evaluated our designs using the APES approach of basic anonymity building
blocks with two objectives: informally identifying room for improvement and
informally identifying deficiencies in our design.
Regarding the first objective, we identified the ‘latency’ connection-level building
block that could be used as an alternative to ‘dummy activity’ under specific cir-
cumstances. We identified six further application-level building blocks that could
be explored to further reduce the power of the trusted third party in our ap-
proach in order to obtain more useful properties of the pseudonyms or to replace
the ‘threshold cryptosystem’ or to support the exploitation of pseudonymity-
layer data by the application. Though, probably none of the candidate building
blocks will satisfy the requirements of our application regarding computational
complexity or delay. As a result, given the APES building blocks list, the current
design may only be improved if some of the current requirements are relaxed,
trading stronger mechanisms off against time or computational complexity. With
respect to the second objective, and given the APES building blocks list and
composition methodology, we could not identify any deficiencies in our design.
Our experience in the exercise of decomposing a given system into basic building
blocks confirms the APES approach: It is possible to analyze a given system de-
sign using APES basic building blocks. The analysis may stimulate improvement
of the design and may point out weaknesses in the design.
The statements regarding both of the above objectives are the stronger, the more
complete the list of considered building blocks is. Though De Win et al. intended
to present an exhaustive list of building blocks for unconditional anonymity [62],
it seems rather unlikely that future developments will not contribute new build-
ing blocks for unconditional anonymity. In fact, in our approach and for various
purposes we found the necessity to compare features that need to be concealed.
This can be achieved using one-way functions. Surely, one-way functions are al-
ready part of several APES building blocks. Anyway, they are also very useful as

186 22 Evaluating the Design Using Basic Building Blocks

such for various applications without the functionality of the building blocks in
which they are contained. We thus postulate the application-level building block
named ‘one-way function’. This is an indication that the current list of APES
building blocks is probably not exhaustive.
As a result, we cannot even informally exclude that there exist better designs or
that the design may have deficiencies. The above statements about the soundness
of our design merely express strong indications based on the current state of the
art.
In addition to the incompleteness of the list of building blocks, we found that
the classification of building blocks is incomplete w.r.t. the level of their use, i.e.
five connection-level building blocks were used at the application-level, regardless
of the APES classification. Further investigation might reveal that (nearly) all
connection-level building blocks can also be used at the application-level.
As a last note, we found that the given building blocks for conditional ano-
nymity were sufficient to build our solution, though APES so far focused on
building blocks for unconditional anonymity, i.e., the given building blocks may
be perfectly sufficient to build various systems for conditional anonymity.

23

Evaluating the Performance
of the Implementation

The rather theoretical results from Chap. 22 are complemented in this Chapter
by an empirical performance evaluation of the implementation from Part III.
To meet the specific requirements of audit data pseudonymization (see Sect. 10.1)
the pseudonymizer must process the audit data on the fly. It is imperative
to pseudonymize audit records sufficiently fast to avoid a bottleneck, which
might impair the overall system performance. In contrast, the reidentifier is
seldomly used and does not need to satisfy real-time requirements. Hence, the
reidentifier of Pseudo/CoRe only supports batch processing, whereas the
pseudonymizer supports processing on the fly, as well as batch processing. We
therefore only evaluate the performance of the pseudonymizer.
The performance measurements were conducted on a customary single processor
Intel Pentium III 650MHz machine with 256MB RAM and a 100Mbps Fast-
Ethernet NIC, running OpenBSD 2.7.
To be able to better understand the performance behavior of the pseudonymizer
together with the shared, the performance of the cryptographic primitives used
by the shared are measured in Sect. 23.1. The measurements show that the
thresholds used for the secret sharing schemes are a critical parameter. In
Sect. 23.2 the performance of the pseudonymizer together with the shared is
measured using synthetic audit data. These measurements confirm the influence
of the threshold parameter on the overall performance. It is also shown that the
pattern matching using regular expressions is the other main factor influencing
the performance of the pseudonymizer.
In Sect. 23.3 the audit data volume is measured in a real-world environment.
Comparing the measured audit data volumes with the performance measure-
ments of the pseudonymizer shows that the system is able to handle real-world
data volumes, even in pathological situations and even under unfavorable para-
meter settings.

188 23 Evaluating the Performance of the Implementation

23.1 Performance of the Cryptographic Primitives

We measured the performance of the cryptographic primitives used in shared
and combined. For secret sharing and Lagrange interpolation the primitives op-
erate over a finite field ZP , where P is a prime number of 128 bits. For encryption
we also use symmetric 128 bit keys. Thresholds used in the measurements de-
fault to 5. The results are averaged over 5 measurements for encrypt() and
share(), over 1 + 10/t2 measurements for initialize() and over 1 + 10000/t2

measurements for combine(), where t is the current threshold.1

The first time the shared processes a given feature in a given disclosure context,
it uses the initialize() routine, which generates a pseudo-random polynomial,
encrypts the feature and inserts the results in an AVL tree (see also Sect. 15.1).
We found that the Blowfish encryption in the OpenSSL crypto library operates
at about 15370 encryptions per second for features of eight characters. It slows
down slightly to about 15150 encryptions per second for features of 32 characters
(see Fig. 23.1a). We expect most features to be pretty short strings. Note, that
the encryption performance is independent of the number of bits used for the
symmetric keys.
Depending on the threshold of the disclosure context associated with a feature,
initialize() generates a number of pseudo-random coefficients for the corre-
sponding polynomial (see Sect. 15.1). The higher the threshold, the more pseudo-
random numbers are generated (see initialize() in Fig. 23.1b).
share() basically evaluates the polynomial that initialize() provides (see
Sect. 15.2). Hence, the higher the threshold, the more expensive are the ex-
ponentiations share() calculates using the GMP library call mpz_powm() (cf.
share() with/without mpz_powm() in Fig. 23.1b).
It is no surprise that GMP library calls take longer if we calculate with larger
numbers (see Fig. 23.1c).
When evaluating the performance of the share() routine, we found some un-
expected run time behavior of the GMP library. The GMP library calls take
longer, the more often integer objects are reused, though mpz_clear() has been
called to free the space the integer objects occupy (see Fig. 23.1d).
Again, an expected result is that the Lagrange interpolation (see Sect. 15.3),
which the combined uses, is an expensive calculation for large thresholds (see
combine() in Fig. 23.1b).

1 The adaptive number of measurements is necessitated by the coarse granularity of
the timers available via the operating system.

23.2 Performance of the Pseudonymizer 189

(a) OpenSSL encryption (b) initialize(), share(), combine()

(c) GMP number size (d) GMP memory management

Fig. 23.1. Performance measurements of the cryptographic components

23.2 Performance of the Pseudonymizer

We measured the performance of the pseudonymizer for varying parameters
using synthetic audit data and configurations. All the numbers reported are av-
eraged over 5 measurements. The repetition of features was considered significant
and no share invalidation was performed. When varying one parameter, all other
parameters used fixed default values as shown in Table 23.1. The synthetic audit
data we used for the measurements contained audit records, which all had the
same number of identifying features, each with a size of three characters. All
features in the audit data were required to be pseudonymized. Each feature in
a given audit record was associated with a distinct disclosure context, assuming
that the features in an audit record are different kinds of identifying data. The
ith features in all audit records were associated with the same disclosure context.

190 23 Evaluating the Performance of the Implementation

Thus, the disclosure contexts could comprise events generated from several audit
components. All disclosure contexts had the same threshold and all features were
associated with the same weight. Audit records from different audit components
and with different event types were generated cyclically.

Table 23.1. Default values for the parameters and how they were varied

parameter default value varied by means of
communication with shared Unix domain socket command line
number of bits 128 source code
number of audit records 1000 audit data
disclosure context threshold 5 configuration
number of disclosure contexts 1 audit data & configuration
number of audit components 1 audit data & configuration
number of event types 1 audit data & configuration
number of features per record 1 audit data & configuration
weight 1 configuration

shared handles features differently depending on whether they have already been
seen in the audit data or not. If a feature is processed for the first time for a
given disclosure context, initialize() generates a pseudo-random polynomial
and stores it together with the encrypted feature (see Sect. 23.1 and Sect. 15.1).
In any case, a polynomial is used to generate one or more fresh shares using
share() (see Sect. 23.1 and Sect. 15.2). Owing to these different cases of feature
handling we used two kinds of audit data to measure the best and the worst
case performance. In the best case all features associated with a given disclosure
context were identical. shared then calls initialize() only once per disclosure
context. In the worst case we had varying distinct features associated with each
disclosure context. As a result, shared calls initialize() for every feature in
the audit data.
When increasing the number of processed audit records, we observe for varying
features a mild performance penalty due to the growth of the AVL trees storing
encrypted features and their corresponding polynomials (see Fig. 23.2a).
A growing number of audit components, event types and disclosure contexts has
a linear influence on the performance, since these objects are managed using list
structures (see Fig. 23.2b).
The more features per audit record are pseudonymized, the more often the
pseudonymizer asks shared for pseudonymity-layer data. In addition to the
communication overhead, also more feature designator patterns need to be
matched by the pseudonymizer (see Fig. 23.2c). The pattern matching is
the main cause for the performance loss, when many features need to be
pseudonymized per audit record (see Fig. 23.2d).

23.2 Performance of the Pseudonymizer 191

(a) Audit records (b) Disclosure contexts, event types, au-
dit components

(c) Features (d) Features, parsing only

(e) Weight (f) Threshold

Fig. 23.2. Performance measurements of the pseudonymizer

192 23 Evaluating the Performance of the Implementation

In contrast, the performance loss caused by generating more shares for larger
weights is moderate (see Fig. 23.2e). There is no additional pattern matching or
communication overhead involved.
Increasing the threshold does not only slow down the generation of shares using
share(), but also the initial generation of pseudo-random numbers for each
distinct feature in a disclosure context using initialize() (cf. initialize()
and share() with mpz_powm in Fig. 23.1b and Fig. 23.2f).
Though the Blowfish encryption performance is independent from the number
of bits used for the encryption key, we have to consider that the secret sharing
slows down for larger numbers (see Fig. 23.1c). For reasonable key lengths we
found only a negligible effect on the secret sharing performance (see the row for
identical features in Table 23.2). In contrast, the impact on the initialization for
secret sharing was significant, since larger pseudo-random numbers need to be
generated and converted to mpz numbers for the GMP library calls (see the row
for varying features in Table 23.2).

Table 23.2. Influence of the key length on encryption and secret sharing

features number of audit records/s for
64 bits 128 bits 168 bits 256 bits

identical 1075 1064 1064 1062
varying 600 573 560 530

The shared can operate on the same or on a remote host as the pseudonymizer
(see Table 23.3). Note, that there is a significant SSL overhead, if there is a lot of
traffic between the pseudonymizer and a local shared connected to the loopback
interface (cf. column 3 and column 4 in Table 23.3). We thus recommend to use
Unix domain sockets in order to avoid the SSL overhead when communicating
with a local shared.

Table 23.3. Influence of the communication technique used between the
pseudonymizer and the shared

features
number of audit records/s for

no shared local Unix SSL over SSL over
domain socket loopback Ethernet

identical 1300 1064 444 400
varying 1300 573 328 377

In practice, the parameters will only in artificially unrealistic settings assume
values as high as shown in Fig. 23.1 and Fig. 23.2. The critical threshold pa-
rameter will in practice usually assume values lower than 10 (see Fig. 23.2f).
Hence, in practice the remaining critical parameter is the number of features

23.3 An Example of Performance Requirements 193

pseudonymized per record, which should usually assume values lower than 5 (see
Fig. 23.2c). In Sect. 23.3 we show that even for unrealistic settings and during
rare pathological situations the performance of the pseudonymizer is sufficient
to cope with the audit record volume of a large site.

23.3 An Example of Performance Requirements

To be able to judge whether our pseudonymizer performs sufficiently fast in a
real-world server environment we evaluated syslog and Apache audit records from
a central server at the Center for Communication and Information Processing
at the University of Dortmund. The machine hardware consisted of a Sun Ultra
Enterprise 4000 with 3GB RAM, six Ultra SPARC 168MHz CPUs, three disk
arrays totaling 396GB and a 100Mbps full-duplex Fast-Ethernet up-link. For
backup services the machine was also connected to an IBM 3494 storage tape
robot. The server ran Solaris 7 and about 1050 users were registered (employees
and students of the University of Dortmund). During working hours an average
number of 25 users were logged in simultaneously. The main services provided
by the machine were:

Web: 37 world accessible Apache web servers
FTP: about 112000 transfers per month with a volume of 12GB
Email: about 45000 emails per month (SMTP, IMAP, POP)
DBMS: one Oracle DBMS for several web applications and a Cambridge chem-

ical structure DB
Education: education system ARCVIEW
Software: large software binary archive for several platforms, exported via NFS
Backup: about 4.5 Terabytes of data stored for 450 client machines

We evaluated all Apache access audit records collected over a period of 13 days
for all 37 web servers (see Fig. 23.3a and Fig. 23.3c). We have also evaluated
all syslog audit records collected over a period of four weeks (see Fig. 23.3b
and Fig. 23.3d). The syslog audit records were collected at other days than the
Apache audit records. The syslog audit records are generated by the following
audit components: sendmail, imapd, ipop3d, in.ftpd, in.lpd, in.telnetd,
in.rlogind, in.rshd, in.rexecd and in.comsat.
For both, syslog and Apache we counted the number of audit records written per
hour (ar/h). For each of the 24 hours of a day we determined the minimum,
the maximum and the average ar/h over all days for which we had audit data
available (see Fig. 23.3a and Fig. 23.3b). For each of the days for which we had
audit data available we also determined the minimum, the maximum and the
average ar/h over all hours of that day (see Fig. 23.3c and Fig. 23.3d).

194 23 Evaluating the Performance of the Implementation

(a) All web servers by hour of day (b) All audit components by hour of day

(c) All web servers by day of month (d) All audit components by day of month

Fig. 23.3. Server statistics: number of audit records generated per hour

We noticed that in the later hours the maximum syslog ar/h deviates significantly
from the average syslog ar/h (see Fig. 23.3b). This is due to an abnormally
high number of in.ftpd audit records at the 10th of December after 4pm (see
Fig. 23.4). The root cause of this event is out of the scope of this text.

(a) FTP server by day of month (b) FTP server by hour of day

Fig. 23.4. The day when FTP went wild

The crucial point here is that the pseudonymizer is able to keep up with the
number of audit records generated even in situations where some audit com-
ponent generates an abnormally high number of audit records and even under

23.3 An Example of Performance Requirements 195

artificially unfavorable parameter settings. See Table 23.4 for the maximum num-
bers of audit records we measured.

Table 23.4. Maximum number of audit records generated per second

audit number of audit records
component per hour per second

Apache 33506 9.31
syslog 4956 1.38

∑
38462 10.68

Part V

Refinement of Misuse Scenario Models

Two limitations of the set-based approach for pseudonymization developed in
Part II and implemented in Part III are identified in Chap. 24. It is proposed
to develop a superior approach for pseudonymization that is tightly bound to
models of misuse scenarios used by intrusion detections systems (IDSs). An ap-
propriate Petri-net-based framework for modeling misuse scenarios is presented
in Chap. 25. Based on a carefully restricted version of the framework a superior
approach to audit data pseudonymization is introduced in Chap. 26. The issues
of pseudonym linkability and pseudonym disclosure are investigated in detail in
Chap. 27 and Chap. 28, respectively. By exploiting knowledge in given models
of misuse scenarios, pseudonym linkability and pseudonym disclosure are tightly
tailored to the models and to the analysis algorithm of the IDS. Due to the
general nature of the modeling framework the results are widely applicable to
existing and future misuse scenarios and IDSs.

24

Motivating Model Refinements

The approach for audit data pseudonymization introduced in Part II is useful
for and compatible with many applications. However, due to two limitations the
approach may not satisfy the requirements of certain other applications. The lim-
itations are studied in Sect. 24.1 and Sect. 24.2, raising the need for a superior
approach for pseudonymization to avoid the described limitations. It is proposed
to bind pseudonymization more tightly to the models of misuse scenarios used
by intrusion detection systems (IDS). An appropriate framework for modeling
misuse scenarios is presented in Chap. 25. Based on a carefully restricted ver-
sion of the framework a superior approach to audit data pseudonymization is
introduced in Chap. 26.

24.1 Coarse-grained Disclosure Context

In Part II disclosure contexts are modeled as sets of weighted observations of ac-
tivity (see Sect. 12.1). Such a definition does not meet the requirements of certain
applications w.r.t. expressiveness of disclosure contexts. We thus proposed two
extensions to the disclosure context model concerning the semantics of repeated
observations (see Sect. 16.4) and complementary observations (see Sect. 16.5).
The extended framework, however, may still not meet specific requirements of
IDSs for misuse detection [131].
Such IDSs usually allow to specify detectable misuse scenarios as signatures using
a specific language. The expressiveness of signature specification languages varies
for different IDSs [152, 149]. More expressive signature specification languages
allow for more concise models of misuse scenarios. Generally it is a good idea to
model misuse scenarios as concisely as possible in order to avoid false alarms,
i.e. false positives. Sometimes, a less concise model may be useful to match also
variants of a misuse scenario. Note, however, that a less concise model should be
motivated by the deliberate choice to match variants of a misuse scenario, and
not by limitations of the specification language.

200 24 Motivating Model Refinements

Advanced IDSs support very expressive signature specification languages, such
as the Event Description Language (EDL) [194, 152]. Using such expressive lan-
guages it is possible to model misuse scenarios, which cannot be expressed equiv-
alently using the extended set-based model from Part II. If we consider a misuse
scenario modeled in a more expressive language, also other activity could meet
the disclosure condition of the corresponding coarse-grained set-based model.
With respect to the more concise model this constitutes a false positive (error
class 2). Such a false positive results in pseudonym disclosure in situations that
are similar to a given misuse scenario, but do not precisely match the definition
of the misuse scenario. This may be acceptable for some applications, while it is
not for others. In the latter case, the modeling framework for disclosure contexts
needs to be extended to match the expressiveness of the signature specification
language.
Note, that extended expressiveness comes at the price that the pseudonymizer
must basically perform the same rather expensive audit data analysis as the IDS.
The advantages and disadvantages of the set-based approach w.r.t. performance
and false positives should be considered as a whole, before employing a more
fine-grained approach.

24.2 Excess Pseudonym Linkability

In Part II the issue of pseudonym linkability is completely ignored. The im-
plementation described in Part III allows the PPO to manually configure the
linkability of pseudonyms for a given feature in a given disclosure context (see
Sect. 20.3). Thus, the pseudonyms for a given feature in a disclosure context are
either always or never linkable, as defined by the PPO. Unfortunately, pseudo-
nym linkability can be (mis)configured independently from the actual require-
ments of the given application that uses the pseudonymized audit data.
However, requirements for linkability actually depend on the given application.
Depending on the algorithm and the a priori knowledge of the application, certain
pseudonyms need to linkable, while others do not. Considering these linkability
requirements as our point of reference, the individual configuration of the pseu-
donymizer from Part III may not implement these requirements correctly. First,
the PPO may have analyzed the algorithm and its a priori knowledge incor-
rectly. The PPO may configure the pseudonymizer to provide more linkability
than actually necessary, such that the application still works correctly, but the
excess linkability is undesirable from the point of view of privacy (see Sect. 7.3).
Conversely, the PPO may configure the pseudonymizer to provide less linkabil-
ity than required by the application. This is likely to result in false negatives
in the application. That is, the application silently fails to recognize certain ac-
tivity in the audit data. For IDSs this means that misuse scenarios are silently
missed. This is considered extremely undesirable. Second, the static definition of

24.2 Excess Pseudonym Linkability 201

pseudonyms to be always linkable or never linkable does not appreciate the fact
that linkability requirements may dynamically depend on the current state of
the application. Thus, while a feature/pseudonym may need to be linkable in a
certain situation, it may not need to be linkable shortly thereafter. Hence, there
is unused potential for dynamically reducing linkability in favor of privacy.
Considering misuse detection IDSs as a specific application, the signatures used
for audit data analysis are known a priori, allowing to automatically infer a
priori, where pseudonyms may need to be linkable. During run-time the state
of the analysis algorithm can be considered to decide, whether the extracted
knowledge about linkability requirements needs to be applied to a pseudonym,
or if linkability is not an issue in the situation. Consequently, the linkability of
pseudonyms can be tailored to a given set of IDS signatures, and it can even
be further restricted considering the state of analysis during run-time, such that
linkability is reduced to the amount necessary for audit data analysis. That is,
linkability is technically bound to the purpose of audit data analysis, considering
the algorithm of the application and its a priori knowledge.
Again, leveraging the a priori knowledge and state of the audit data analysis
algorithm comes at the price that the pseudonymizer must basically perform the
same analysis as the IDS. Thus, the cautionary note from Sect. 24.1 also applies
here.

25

Models of Misuse Scenarios

For the refinement of misuse scenario models we consider IDSs as the given
application for analyzing (pseudonymized) audit data in order to detect mis-
use scenarios. Misuse scenarios are defined as activity considered to violate the
service-specific security policy of the organization. The audit component of the
given service observes the service activity. Observations of activity are manifested
in the form of events, which are embedded in audit records (see Sect. 12.1.1). An
ordered set of events is also denoted as the manifestation of certain activity,
if these events are symptomatic to be observed when this activity takes place.
Note, that a given activity can have several distinct manifestations. An ordered
set of audit records is denoted as audit data.
Misuse detection is the process of detecting manifestations of misuse scenarios
in audit data based on models of manifestations of misuse scenarios.1 This is
done under the assumptions that a manifestation is actually observed, when a
misuse scenario takes place (completeness), and that a misuse scenario actually
takes place, when its manifestation is observed (correctness). In the following,
we assume that we have audit components that can observe misuse scenarios
completely and correctly.2

This assumption simplifies the terms used for describing the concepts of misuse
detection, because we do not need to strictly distinguish activity and observa-
tions or manifestations of activity. We can then talk about events, as if they are
actual activity, instead of merely observations of activity. Also, it is then possible
to talk about models of misuse scenarios that describe (misuse) activity, if we
actually mean models that describe misuse scenario manifestations. Note, that a
1 Note, that the model of a given misuse scenario does not describe the activity that is

necessary to perform the misuse scenario (system input; exploit language according
to Vigna et al. [218]), rather it describes the activity that is observable during the
misuse scenario (output of the audit component of the system; detection language
according to Vigna et al. [218]).

2 If we do not have such audit components, we cannot expect to achieve complete and
correct misuse detection.

204 25 Models of Misuse Scenarios

given model of manifestations of a given misuse scenario should also completely
describe the manifestations of misuse activity, such that the model does not
miss a manifestation of the misuse scenario (false negative). Likewise, the model
should describe the manifestations of the misuse scenario correctly, such that the
model does not apply to manifestations of other activity (false positive).
Under the assumption of correct and complete audit components and correct
and complete models (of manifestations) of misuse scenarios, one can conjecture
from a model matching a manifestation in audit data that the corresponding
misuse scenario activity took place. Also, if no model matches any manifestation
in the audit data, one can conjecture that no misuse scenario activity is taking
place.
A prerequisite to specifying complete and correct models of misuse scenarios is a
sufficiently expressive modeling framework. The framework should also support
human intuition during model specification in order to reduce the potential for
human error.
To be processed by an IDS, the models of misuse scenarios usually are translated
to or directly expressed in a purely textual language [148, 149], such as EDL
[152, 149, 194]. The textual representation of models of misuse scenarios are
commonly denoted as misuse detection signatures, intrusion detection signatures
or just signatures in the literature about misuse detection or intrusion detection
systems.3

In terms of pseudonymization, misuse scenarios are disclosure scenarios, i.e. it
is desired to be able to disclose pseudonyms in a controlled way, if and only if
a misuse scenario has been detected by the IDS. In our approach a disclosure
scenario is modeled by an appropriate disclosure context over observations, i.e.
events (cf. Sect. 12.1).
Clearly, disclosure contexts for IDS-specific audit data pseudonymization model
the same concept as the models of misuse scenarios that are encoded in the
signatures of the given IDS. Thus, to be able to tailor disclosure contexts and
linkability of pseudonyms in audit data to the misuse scenarios of the IDS, we
need to understand how misuse scenarios are modeled for the use by an IDS.
A brief overview about related work on misuse scenario modeling frameworks
and signature languages is given in Sect. 25.1, motivating the need for a new
modeling framework. The semantic requirements for misuse scenario modeling
are summarized in Sect. 25.2. A suitable framework for modeling misuse scenar-
ios is presented in Sect. 25.3. For the design of a pseudonymization approach
based on models of misuse scenarios, the framework is artificially restricted in

3 Vigna et al. distinguish several (attack) languages that are involved in the pro-
cess of reproducing (exploit languages), documenting (event languages), detecting
(detection/correlation languages), and responding to attacks (response/report lan-
guages) [218]. According to this classification, signature (specification) languages are
detection languages.

25.1 Related Work on Signature Languages 205

Sect. 25.4, yielding a useful subset that still meets all important semantic re-
quirements. Based on the limited framework a pseudonymization approach is
developed in Chap. 26.

25.1 Related Work on Signature Languages

Several pertinent languages for specifying intrusion detection signatures have
been proposed, such as RUSSEL for ASAX [157], P-BEST for EMERALD [138],
LAMBDA [56], ADeLe [155], SHEDEL [150] and EDL [152].
Studying and engineering signatures requires a notation that allows for an intu-
itive understanding of the considered misuse scenarios. We argue that in contrast
to a textual representation for complex signatures a graphical representation pro-
vides a more intuitive view on what misuse scenario(s) a signature describes. For
some languages, a graphical representation has already been proposed: MuSigs
for ARMD [137], STATL for the STAT Framework [74], SUTHEK [177] and
IDIOT [132]. While MuSigs, STATL and SUTHEK use their own notions of
Finite State Automata (FSA) to model misuse scenarios, IDIOT uses Colored
Petri-nets (CPN). For a more comprehensive and detailed comparison of various
signature languages refer to Meier [149].
Graphical misuse scenario modeling frameworks not only support an intuitive
understanding of misuse scenarios, they are also largely independent from the
actual syntax of the languages used to encode the signatures for an IDS. It has
been shown by Pouzol et al. [177] that a signature specified using a sufficiently
expressive graphical modeling framework can be translated to several existing
signature specification languages.
For a deeper understanding of the required semantics and expressiveness of a
general modeling framework for misuse scenarios, we analyzed existing signature
languages and signatures. In the next step we identified a modeling approach
that can be easily adapted to satisfy all of the requirements and which has
already been used in the intrusion detection domain. We adopted the proposal of
Kumar [132] to model signatures using CPNs and adapted and extended it w.r.t.
modeling elements and semantics to accommodate the required expressiveness
and semantics.4

4 Note, that is was necessary to define our own notion of a modeling framework based
on CPNs, because Kumar’s model suffered from severe shortcomings [132]: Model-
ing the garbage collection of partial matches of misuse scenarios using invariants was
error-prone and the implementation necessarily inefficient. The value of token vari-
ables could never change, such that different modes of repetition and step instance
selection could not be expressed. Consumption of system state was modeled contra-
intuitively as a property of the places, limiting intuitive modeling and also required
expressiveness (see Sect. 25.2 for definitions of the terms ‘step instance selection’
and ‘consumptivity’).

206 25 Models of Misuse Scenarios

When compared to existing work on FSAs for misuse detection, CPNs provide
three major advantages:

1. CPNs allow to specify partial orders in a compact way.
2. During signature engineering the CPN tokens can be used to illustrate partial

detections of misuse scenarios along with their current variable bindings.
3. CPNs provide the required expressiveness to engineer signatures for the use

with any IDS by translating the CPN models into the target signature lan-
guage.5

Later, Meier approached the topic of semantics and expressiveness from a differ-
ent angle, leveraging Zimmer’s work on a meta-model for semantics of complex
events in active DBMSs [148, 225, 224] (see Sect. 25.2). Our previous analysis of
existing IDS signature languages and signatures together with Meier’s analysis
of Zimmer’s meta-model provides strong indications that we came up with a
complete set of requirements. Using a constructive approach, Meier has shown
that CPNs satisfy all of these requirements [149]. Consequently, the CPNs we
use provide the deterministic semantics required for misuse detection and can
express all misuse scenarios that can be expressed in any currently existing sig-
nature language. Hence, the results about pseudonymization we develop in this
Part apply to a large body of existing work on misuse detection.

25.2 Semantic Requirements

In the following, the semantic requirements for modeling misuse scenarios are
shortly summarized (cf. Table 25.1). The presented requirements were obtained
by analyzing domain knowledge (existing misuse detection signature languages
and signature bases of IDSs) as well as by analyzing the semantics of events in
a similar problem domain (triggers in active DBMSs) [148, 225, 224]. For details
and examples refer to Meier [148, 149].
In the following, we denote a model of a given misuse scenario as a complex
event.6 A complex event consists of inter-related events, where each of the events
is denoted as a step of the complex event. For a complex event to occur, matching
events must have occurred and must be bound to each step of the complex event.
Events that can be bound to a step are basic events and complex events. Basic
events represent the basic observable unit, as provided by the audit component.7

5 Note, however, that engineering signatures using CPNs is still limited by the expres-
siveness of the target signature language.

6 Note, that here both, complex events and disclosure contexts, are models of misuse
scenarios.

7 Note, that the concept of complex events introduces a notion of abstraction, because
also occurred complex events can be bound to steps. When a complex event occurs,

25.2 Semantic Requirements 207

Table 25.1. Semantic requirements for models of misuse scenarios. The most com-
monly used mode of an aspect is emphasized

dimension aspect instance

event pattern

type and order

sequence
disjunction
conjunction
simultaneous
negation

repetition
exact
at least
at most

continuity continuous
non-continuous

concurrency overlap
non-overlap

context conditions intra-event conditions
inter-event conditions

step instance selection
first
last
all

step instance consumption consuming
non-consuming

When an event is bound to a step, the step is also said to be instantiated, and
the instantiated steps are considered to be the (partial) instance of the complex
event. If all steps of the complex event are instantiated, the (complete instance
of the) complex event is said to occur.
Summarizing, a complex event models a misuse scenario by specifying how to
identify the basic events that can be observed while the misuse scenario takes
place. Since several misuse scenarios of the same type may be executed simultane-
ously, the modeling framework allows to model manifestation-specific state (e.g.
bind features to variables, e.g. a file handle), to be able to distinguish distinct
(partial) instances of a given (type of) complex event.
The semantics of complex events (for triggers in the domain of active DBMS)
can be partitioned in three dimensions [224]:

Event pattern: Several criteria influence the decision whether a complex event
is recognized in given audit data, e.g. the type and order of events. An event
pattern defines the complex event to look for. Refer to Sect. 25.2.1 for details.

it must be represented by a “synthetic” manifestation, describing a more abstract oc-
currence. Such a manifestation is usually denoted as a misuse alarm. Sets of alarms
can be analyzed just like basic events, such that our concepts of pseudonymiza-
tion apply accordingly. However, such a scenario may involve distributed structures,
which are not considered in this book. Therefore, in the following we assume that
only basic events are bound to the steps of a complex event.

208 25 Models of Misuse Scenarios

Step instance selection: For a given step of a given complex event, which is rec-
ognized to be contained in the audit data, there may exist several basic
events in the audit data that can be bound to the step. Instance selection
describes, which of the matching events should be bound to the steps of a
complex event. This selection influences further inspection or correlation of
the basic events bound to the steps of the recognized complex event. Refer
to Sect. 25.2.2 for details.

Step instance consumption: A partial instance of a complex event represents also
the partial system state that is relevant in the context of the complex event.
Some basic events describe activity that changes (consumes) features of such
system state. Step instance consumption specifies, whether the current par-
tial instance of the relevant complex event can bind only the current instance
of the basic event, or if it may also bind further instances of the basic event.
Refer to Sect. 25.2.3 for details.

25.2.1 Event Pattern

An event pattern defines the complex event to look for. The frame of a complex
event is formed by the steps (event types) and their order.
Many signatures describe simply consecutive events (sequence). Alternative ac-
tivity can be modeled disjunctively, allowing to represent variants of misuse
scenarios in a compact way (disjunction). Concurrent threads of activity can be
modeled in a conjunctive way, such that all interleavings of the event sequences
of the threads are accepted by the model (conjunction). Simultaneous events
may occur in parallel systems and can be correlated using their time stamps
(simultaneous). In the context of a complex event, certain basic events prohibit
completion of the complex event. Such events can be modeled to be not allowed
to occur within parts of the manifestation of a misuse scenario (negation).
It is useful to be able to specify the number of times a step must occur for a
misuse scenario to complete (repetition), e.g. for dictionary attacks or denial of
service attacks (exactly, at least or at most n times, or at least n and at most m
times).
The continuity semantics of a misuse scenario model defines, whether between
three consecutive steps of the event types A, B and C an event c is allowed
to occur between events a and b, and if event a may occur between b and c.
The continuous semantic allows for such occurrences and is most useful for the
purposes of misuse detection.
When composing more complex patterns from a number of less complex patterns,
it is necessary to decide about the concurrency of the less complex patterns. For
concurrent composition the threads may overlap, i.e. interleave, and for sequen-
tial composition this is not the case (non-overlap). Note, that the concepts of

25.2 Semantic Requirements 209

conjunctive threads and of steps bound to complex events are similar, but not
quite the same (see [148, 149] for details).
A very important aspect of the semantics is the ability to specify constraints on
the context in which the steps of a complex event occur. Constraints that can be
evaluated by merely inspecting the features of the current event are denoted as
intra-event conditions and can be used for example to select events that affect
a certain user, host or file. Note, that the event type selection criterion can
be considered a special case of intra-event conditions. Inter-event-conditions can
only be evaluated by inspecting at least two events, which implies to create state.
For example, inter-event conditions can be used to correlate events that affect
the same user, host or file.

25.2.2 Step Instance Selection

While a given event pattern specifies when a complex event occurs, the step
instance selection defines, which of the possibly more than one matching events
is bound to each step of the complex event. This is an important decision, if
we are not only interested in the fact that a complex event occurred, but if we
also need to document the events that lead to the complex event for further
correlation and response. Meier adopts three of the instance selection modes
proposed by Zimmer [148, 224]: selecting the first or the last event or all events
that match the given step. These modes can be used for example to detect when
a performance parameter exceeds a threshold, capturing the parameter value
when the threshold was exceeded the first time, the current (last) value right
before the next step occurred, or all values for further statistics.

25.2.3 Step Instance Consumption

The current system state that is relevant for a given complex event is recon-
structed by binding events to the steps of the complex event, such that the
partial instance of the complex event represents the reconstructed relevant sys-
tem state. After an event has been bound to a given step of a complex event, the
resulting partial instance of the complex event represents the occurrence of the
event as well as the relevant system state that has been modified by the step.
Some events describe activity that changes features of system state, which are
relevant in the context of the considered complex event, for example the destruc-
tion of system objects, e.g. process termination and file deletion, or the change of
object features, e.g. renaming a file and changing access privileges. Such activity
is said to consume the relevant system state, which has been created by previous
activity, and which is represented by the matching partial instance of the com-
plex event. Other (non-consuming) activity does not change relevant features of
system state, e.g. reading from a file.

210 25 Models of Misuse Scenarios

Step instance consumption defines, whether a given partial instance of a complex
event can evolve into one or more partial instances by binding a consuming or
a non-consuming event to a given step, respectively. Since a consuming event
modifies the system state represented by the partial instance, the partial in-
stance is evolved by binding the event to the step, effectively consuming the old
partial instance. However, the partial instance is evolved for each occurrence of
a given non-consuming event type, creating new partial instances representing
each occurrence.

25.3 Modeling Framework

While the semantic requirements from Sect. 25.2 specify, what semantic aspects
are relevant for the detection of manifestations of misuse scenarios, the modeling
framework described here focuses on how the relevant aspects can be captured
and modeled. The exposition restricts to summarizing the concepts needed to
understand the pseudonymization approach described in Chap. 26. Please refer
to Meier [149] for more details, many examples and a formalization. Meier also
shows that the expressiveness of the framework meets all semantic requirements
from Sect. 25.2 by providing equivalent signature-nets for each semantic aspect
[149] (see Sect. 25.3.6).
Considering the semantic requirements from Sect. 25.2, modeling misuse sce-
narios is the process of characterizing complex events, i.e. specifically the re-
lationships between observed events. We propose a modeling framework based
on Petri-nets [9] with some extensions. Petri-nets allow the modeling of com-
plex causal dependencies, and tokens can be used to simulate or analyze system
dynamics [164, 165, 9].
In the following, models of misuse scenarios that are expressed in our modeling
framework are denoted as signature-nets, accounting for the fact that we do not
use standard Petri-nets and that the models also have a textual representation
as signatures (see Sect. 25.3.6).
Signature-nets are comparable with non-autonomous Petri-nets [60], because the
occurrence of transitions depends primarily on events, which occur externally to
the model. In our modeling framework the basic building blocks of signature-nets
are places and transitions that are connected by directed edges. The dynamics
of signature-nets are simulated using tokens.
The places of a given signature-net represent reconstructed states of the observed
system that are relevant for the misuse scenario modeled by the signature-net.
System state is reconstructed by observing events. Transitions describe observ-
able events of the misuse scenario, which are causing change of system state
that is relevant in the context of the misuse scenario. The directed edges con-
necting places and transitions specify causal relationships between system states
and events. Each token represents the system state so far caused by the activity

25.3 Modeling Framework 211

thread of a single instance of the misuse scenario, i.e. a token represents an in-
stance of a (partial) complex event. In addition to the state represented by the
place, where the token currently resides, the token stores information about the
current system state, which is specific to the (partial) complex event represented
by the token. Specific information about system state is extracted during state
changes from the observed events, which are bound to the steps of the complex
event when a transition occurs.
If a given sequence of events causes transitions of a given signature-net to occur
until a token reaches a defined final place of the signature-net, then this sequence
of events represents a manifestation of the misuse scenario that is modeled by
the signature-net. When the final place is reached, the complex event modeled
by the signature-net occurs and can be further correlated or responded to using
the information extracted from the sequence of events and stored in the token.
In the following, the basic building blocks of signature-nets are described in
some more detail, i.e. places (Sect. 25.3.2), transitions (Sect. 25.3.3) and rules
for transition occurrence (Sect. 25.3.5), edges (Sect. 25.3.1), as well as tokens
(Sect. 25.3.4).

25.3.1 Edges

Directed edges are used to model which system state is a necessary precondition,
such that a given event can occur, and which adjusted system state is the result if
the event occurs. Hence, in a signature-net places and transitions are connected
by directed edges to specify the order of the basic events to look for (cf. order
in Sect. 25.2.1). We denote edges that are directed from places to transitions
as input edges and edges that are directed from transitions to places as output
edges.

output edge or consuming input edge

non-consuming input edge+

t1 p3

p1

p2

+

Fig. 25.1. Symbols for (non)-consuming edges

Additionally, input edges are characterized by the consumptivity (see
Sect. 25.2.3) of the transition event type w.r.t. the state represented by the

212 25 Models of Misuse Scenarios

place connected to the transition (see Fig. 25.1). Consuming edges correspond
to standard edges in Petri-nets, whereas non-consuming edges are similar to test
edges in Petri-nets [49].

25.3.2 Places

The modeling framework distinguishes four types of places: initial, interior, es-
cape and final places (see Fig. 25.2).

initial place

interior place

escape place

final place

Fig. 25.2. Symbols for types of places

Each signature-net contains one or more initial places. A signature-net describes
one complex event and possibly also variants of the complex event. For the
complex event and for its variants the signature-net contains one or more final
places. If a token reaches a final place, then a manifestation of the corresponding
(variant of the) complex event has been identified in the audit data, i.e. the
respective (instance of the) (variant of the) complex event occurs.
Escape places characterize system state that a partial complex event instance has
caused by means of the last transition, such that the complex event cannot be
completed.8 Consequently, tokens reaching an escape place are removed from the
signature-net. Escape places have the important function of garbage collection
by removing obsolete tokens.
Places that are neither initial, final nor escape places are denoted as interior
places, which are visited by tokens on their path from an initial place to a final
or escape place.
Moreover, places connected to a transition via input edges are denoted as input
places of the transition, whereas places connected to a transition via output edges
are denoted as output places of the transition.

25.3.3 Transitions

Transitions describe the observable events changing the system state along some
path in the signature-net until some partial instance of some complex event
8 In principle, for each signature-net at most one escape place is sufficient, but for

more convenient modeling the framework allows for an arbitrary number of escape
places per signature-net.

25.3 Modeling Framework 213

is completed or discarded. Transitions are characterized by an event type, by
intra-event conditions, by inter-event conditions, by token bindings (cf. type,
intra-event conditions, inter-event conditions and state in Sect. 25.2.1) and by
actions. Moreover, a given transition is influenced by tokens in its input places
and it influences tokens in its output places, representing the required system
state such that the transition can occur and the adjusted system state after the
transition has occurred, respectively (see Sect. 25.3.5). Each transition is associ-
ated with a transition label, which specifies the characteristics of the transition
(see Fig. 25.3).

event type

intra-event
condition

condition
inter-event

variable
bindings

actions
label

transition

user == ”root”

FailedLogin

h == hostname

f := file

alert(” . . . ”)

t1

Fig. 25.3. Symbols for transitions and transition labels with an example

The event type of a transition identifies the type of event that the transition
models as a step of the complex event (see event type ‘FailedLogin’ in Fig. 25.3).
Intra-event conditions specify additional restrictions w.r.t. the modeled event by
requiring certain features of the event (see value ‘root’ required for the feature
designated ‘user’ in Fig. 25.3).
Inter-event conditions relate the current event to events that were observed ear-
lier. Atoms of inter-event conditions are features of the event or variable values
of earlier token bindings (see the comparison of the value of the token vari-
able named ‘h’ and the feature designated ‘hostname’ of the current event in
Fig. 25.3).
Token bindings assign values to token variables, where the values are a function of
constants, features of the event and values of token variables (see the assignment
of the feature designated ‘file’ to the token variable named ‘f ’). As an example
for the correlation of two distinct events a and b, an inter-event condition may
compare a feature of the current event b with a feature of an earlier observed

214 25 Models of Misuse Scenarios

event a, which has been stored in a token variable (e.g. in Fig. 25.3 the token
variable named ‘h’ may contain the feature designated ‘hostname’ of an event a
observed earlier).
Actions allow for the (early) response to (partial) complex events (see the action
‘alert(". . . ")’ in Fig. 25.3). In actions the features of the current event, variable
values or constant values can be used.
In accordance with the definitions in Sect. 12.1.1 the concepts specified in tran-
sition labels are mapped to events in audit data as follows:

• the event type is directly specified,
• features are referenced using feature designators, and
• variable values are referenced by the variable name.

Note, that a feature type is the combination of an event type and a feature
designator.
Escape places are used for expressing that the current event makes it impossible
for the complex event represented by the signature-net to occur. Consequently,
the respective tokens are removed from the marking of the signature-net. In the
following, we denote transitions that are connected to an escape place as escape
transitions. An escape transition has the meaning that a complex event will not
be completed and that no response will be necessary. In the following we assume
that escape transitions do not need to execute actions. Note, that it is not useful
to connect escape transitions to other output places, save the escape place. If
escape transitions execute no actions and are merely connected to an escape
place, it is useless if they perform token bindings, because the assigned token
values could not be used by other non-escape-transitions. Escape transitions are
used to remove tokens from the marking under certain conditions. Hence, it is
not sensible to use non-consuming input edges for these transitions.
To be able to express conjunctively occurring events properly (see conjunction in
Sect. 25.2.1), spontaneous transitions are introduced, which can occur indepen-
dently from any events. They are therefore characterized by the fictitious event
type ε, and they always have empty intra-event conditions. The inter-event con-
ditions of spontaneous events do not refer to event features, but only to variable
values and constant values. Transitions that are not spontaneous, are denoted
as regular transitions.

25.3.4 Tokens

A signature-net containing only places and transitions connected by edges can
describe the causal relationships of events. To be able to describe instances of
(partial) complex events, i.e. partially matched misuse scenarios, the marking of

25.3 Modeling Framework 215

signature-nets needs to be defined, as well as the rules how a given marking can
be transformed into a new marking.
The marking of a signature-net assigns a (positive and finite) number of tokens to
each place of the signature-net. The initial marking is the state of the signature-
net, where exactly one token is assigned to each initial place of the signature-net.
Tokens describe the system state w.r.t. the corresponding instance of a (partial)
complex event, as it was reconstructed from the events observed so far. The
system state is characterized by the place where a token resides as well as by
the variable bindings of the token. Token variables are conceptually analogous
to the color of tokens in Colored Petri-nets [123]. If a value is assigned to a
token variable, the variable is said to be initialized, otherwise it is said to be
uninitialized. Uninitialized variables are not depicted in the examples.
Figure 25.4 depicts a partial signature-net, its marking and a current event.
The bindings of the token at the initial place are empty, i.e. all variables are
uninitialized. Occurrences of transition t1 have already generated three tokens
in the output place of t1. The token variable v has been bound to different values
for each instance of the partial complex event that is represented by each token.
Note, that all features designated oid of the events that activated t1 (see the
token binding of ‘t1’ in Fig. 25.4) satisfied the intra-event condition of t1.

token
bindings

type
event feature designator : feature

e2 oid : 5

t2t1

v : 7

v : 5

v : 2

true

e1

oid! = 0

v := oid

v == oid

e2

true

alert(v)

event with features

token with bindings

+ +

Fig. 25.4. Symbols for events and tokens as well as token bindings

Moreover, the current event with event type e2 is depicted, where the feature
designator oid corresponds to the feature 5. The inter-event condition of tran-
sition t2 requires that the feature designated oid equals the value of the token
variable named v. In Fig. 25.4 this condition is satisfied only for the input to-

216 25 Models of Misuse Scenarios

ken, where the value 5 is assigned to the token variable named v, i.e. the partial
complex event represented by this token will evolve.
In signature-nets a set of tokens is assigned to a place, i.e. if a marking would
have identical tokens in the same place, the identical tokens are unified (merged)
to a single token. This is being done because identical tokens represent the same
instance of a misuse scenario. The identical tokens would simultaneously take
the same path through the signature-net, i.e. trigger redundant responses.

25.3.5 Transition Activation and Occurrence

For misuse detection purposes it is useful that transitions in signature-nets occur
in a deterministic way. In the following, rules are presented, which result in all
activated transitions to occur for all activating unified tokens (see below).
To describe the rules for transition occurrence, some terms are defined. An ac-
tivating token set of a given transition t contains exactly one token from each
input place of t. A set of tokens is unifiable, if for all initialized variables of all
tokens in the set holds: the value assigned to an initialized variable named v from
token ti equals the assigned value of all variables named v from all other tokens
tj , j �= i. Each activating token set s that is unifiable can be represented by a
unified token u. The unified token u contains all variables of all tokens from s.
That is, u contains variables with the same names of all variables from all tokens
in s, where the variables of u receive the values from the initialized variables
from the tokens in s and the other variables of u remain uninitialized. A unified
token that satisfies all inter-event conditions of t w.r.t. a given event e is denoted
as activating unified token. The union of all activating unifiable token sets that
are represented by the activating unified tokens is denoted as the set of input
tokens of t w.r.t. e.

Transition activation:

The marking of a signature-net is said to be unstable if spontaneous transitions
are activated. Conversely, the marking of a signature-net is denoted as stable, if
no spontaneous transitions are activated.
A given spontaneous transition t is activated independently from any events
occurring (see Sect. 25.3.3), i.e. if at least one activating unified token exists for
t in the marking of the signature-net.
For the current event e and a given marking m of the signature-net, a regular
transition t is activated if m is stable, the event type of e equals the event type
of t, e satisfies the intra-event condition of t, and at least one activating unifiable
token exists for t w.r.t. m and e.
As a result of these activation rules, as long as the marking of the signature-net
is unstable, only the activated spontaneous transitions may occur until the new
marking is stable. Then, regular transitions may be activated.

25.3 Modeling Framework 217

Transition occurrence:

In the following, the rules for the occurrence of transitions are described. After
the initialization of a given signature-net with the initial marking m0, sponta-
neous transitions may occur if m0 is unstable. After the spontaneous transitions
have occurred according to the rules, the resulting marking m is stable.
Owing to the rules, it can be assumed that the current marking m of the
signature-net is stable, whenever a current event e is provided to the signature-
net.

Scope: All activated transitions occur virtually simultaneously for a given mark-
ing. Each activated transition t occurs for all activating unified tokens.9

When a transition occurs, one or more tokens are generated in its output
places (see below: token generation) and tokens may be removed from some
of its input places (see below: token removal). Within the scope of the current
event e the resulting new marking m′ is allowed to activate spontaneous
transitions, but no regular transitions.
As long as the virtually simultaneous occurrence of transitions results in an
unstable marking, spontaneous transitions occur. When a stable marking is
reached, all transitions have occurred within the scope of e and the next
event may be processed.

Token generation: The token bindings of a given occurring transition t are ap-
plied to each activating unified token u, i.e. values can be assigned to unini-
tialized variables of u and new values can be assigned to initialized variables
of u. A copy of u (including the new token bindings) is placed in all output
places of t.

Token removal: Each token that is an element of the set of input tokens of a given
occurring transition t and that resides in an input place that is connected to
t with a consuming edge, is removed from the signature-net.

Response: When a transition occurs, its associated actions are executed.

A more concise and formal definition of transition activation and occurrence is
given by Meier [149]. The above informal definition is illustrated with the fol-
lowing example, which covers interesting cases of token generation and removal.
Figure 25.5 depicts a partial signature-net with a stable marking just before
the event e1 occurs. When e1 occurs, there are four activating token sets for
transition t1: s1 = {1, 3}, s2 = {1, 4}, s3 = {2, 3} and s4 = {2, 4}, where s1

9 Note, that conflicts in classical Petri-nets, where the intersection of the input token
sets of two different transitions is non-empty, usually introduce non-determinism.
Non-determinism is not useful for the application of signature-nets. Consequently,
non-determinism is avoided in signature-nets, such that both transitions occur si-
multaneously, sharing a common subset of input tokens.

218 25 Models of Misuse Scenarios

and s3 are unifiable. The token sets s2 and s4 are not unifiable, because the
contained tokens assign different values to the variable named a. Moreover, for
transition t4 exist two unifiable activating token sets: s5 = {3} and s6 = {4}. The
unifiable activating token set s1 is represented by the unified token u1, where the
variables of u1 are assigned with the following values: a : 1, b : 3, c : 1. Likewise,
s3 is represented by the unified token u2, where a : 2, b : 2, c : 1. For t4 the
activating token sets s5 and s6 are represented by the unified tokens u3 and u4,
respectively, where u3 equals token 3 and u4 equals token 4.

3

4

1

2

t1

true

e1

true

d := uid

t4

c == 1

e1

uid == 5

t2

t3

true

e1

true

a == 1

ε

true

b : 3

a : 1

b : 2

a : 2

c : 1

c : 2

a : 3

e1 uid : 5

+

Fig. 25.5. Marking before any transitions occur for an event of type e1

For the given marking in Fig. 25.5 and for the occurred current event e1 the uni-
fied token u1 and u2 satisfy the conditions of t1 and therefore both are activating
unified tokens of t1. For t4 only u3, but not u4, satisfies the transition conditions,
such that only u3 is an activating unified token of t4. Hence, s1 ∪ s3 = {1, 2, 3}
is the set of input tokens of t1, which are represented by u1 and u2, whereas
s5 = {3} is the set of input tokens of t4, as represented by u3. Note, that the
sets of input tokens of t1 and t4 have a common subset of {3}.

25.3 Modeling Framework 219

Moreover, t1 and t4 are labeled with the same event type e1, and the marking is
stable, i.e. no spontaneous transitions are activated, such that both t1 and t4 are
activated. Due to the deterministic nature of transition occurrence in signature-
nets, t1 occurs for u1 and for u2, and t4 occurs for u3 virtually simultaneously.
When t1 occurs, its token binding assigns the feature designated uid to a variable
named d and extends u1 and u2 accordingly (see ‘d : 5’ in Fig. 25.6). A copy
of the extended activating unified tokens u1 and u2 is generated in all output
places of t1 (see the tokens 5, 7, and 6, 8 in Fig. 25.6). Likewise, a copy of u3

is generated in the output place of t4, when t4 occurs (see token 9 in Fig. 25.6).
Note, that the transition labels are not shown in Fig. 25.6 (cf. Fig. 25.5).

4

5

6

7

8

9

1

2

t1

t4

t2

t3

b : 3

a : 1

b : 2

a : 2

c : 2

a : 3

e1 uid : 5
c : 1

d : 5

c : 1

b : 2

a : 2

d : 5

c : 1

b : 3

a : 1

+

Fig. 25.6. Marking after t1 and t4 occurred for an event of type e1

The set of input tokens is {1, 2, 3} for t1 and {3} for t4. The input tokens 1 and 2
are not removed, because the input place is connected to t1 via a non-consuming
edge. However, token 3 is removed, because the input place is connect to t1 as
well as to t4 via consuming edges. Note, that token 3 would also be removed if
the input place were connected with at least one consuming edge to one of the
transitions, even if there were non-consuming input edges connected to the input
place.
The new marking resulting from regular transitions occurring is not considered
to activate regular transitions. Hence, transition t2 is not activated and cannot
occur. However, the new marking may activate spontaneous transitions, here t3.
The newly generated tokens 7 and 8 in the input place of the spontaneous tran-
sition t3 are considered as activating and unifiable token sets s7 = {7} and

220 25 Models of Misuse Scenarios

s8 = {8} for t3 (see Fig. 25.6). The unified token u4 represents s7 and satisfies
the transition conditions of t3, but the unified token u5 – representing s8 – does
not. As a result, t3 occurs for u4, performs no token bindings and generates a
copy of u4 in the output place (see token 10 in Fig. 25.7). Since the input place,
where the input token 7 resides, is connect via a consuming input edge to t3,
token 7 is removed. Figure 25.7 depicts the partial signature-net and its marking
after the transition occurrence triggered by the event e1. Figure 25.7 does not
show the transition labels (cf. Fig. 25.5).
Note, that the transitions in the example were not labeled with any actions, such
that no actions have been executed when the transitions occurred.

1

2

4

5

6

8

9

10

t1

t4

t2

t3

b : 3

a : 1

b : 2

a : 2

c : 2

a : 3

e1 uid : 5
c : 1

d : 5

c : 1

b : 2

a : 2

d : 5

c : 1

b : 3

a : 1

+

Fig. 25.7. Marking after all activated transitions have occurred

25.3.6 Semantic Requirements Met By Signature-nets

Meier shows that the expressiveness of the modeling framework satisfies the
semantic requirements from Sect. 25.2 by giving equivalent signature-nets for
each semantic aspect [149]. The results are briefly summarized in the following.
For many semantic requirements exist directly corresponding constructs in the
modeling framework, such as place-transition sequences (sequence), input places
connected to several transitions (disjunction), transitions connected to several
output places (conjunction), intra-event conditions and inter-event conditions in
transition labels, as well as consuming and non-consuming input edges. Also the

25.3 Modeling Framework 221

most commonly used modes of continuity (continuous) and step instance con-
sumption (first) are properties of the default behavior of signature-nets. More-
over, more complex signature-nets can be composed from more basic signature-
nets by connecting the basic signature-nets sequentially (non-overlap) or con-
junctively (overlap).
Other semantic aspects can be expressed by composing various elements of
signature-nets. Simultaneous events can be modeled as conjunctive events with
inter-event conditions on the time stamp.10 Negation and non-continuous seman-
tics are modeled as a disjunction connected to an escape place.11 Repetitions are
modeled as cycles in the signature-net, where token bindings and inter-event con-
ditions are used to express conditions for termination. Cycles can also be used
to express the step instance selection modes last and all. Note, that the mode
all requires an extension to token variables and token bindings: Token variables
may contain lists of values and token bindings may append values to such lists.

Table 25.2. Semantic requirements met by signature-nets. The most commonly used
mode of an aspect is emphasized

semantic requirement signature-net construct
sequence sequence
disjunction disjunction
conjunction conjunction
simultaneous conjunction, token binding using time stamp
negation disjunction, escape place
exact repetition disjunction, token binding, escape place
at least repetition disjunction, token binding
at most repetition disjunction, token binding, escape place
continuous default behavior
non-continuous disjunction, escape place
overlapping concurrency conjunction
non-overlapping concurrency sequence
intra-event condition intra-event condition
inter-event condition inter-event condition
first step instance default behavior
last step instance unbounded repetition
all step instances list type token variable
consuming step consuming input edge
non-consuming step non-consuming input edge

10 Simultaneous events can already be expressed via semantics for conjunctive events
and inter-event conditions on time stamps. Hence, the semantic requirements as
proposed by Zimmer [224] and as adapted to misuse detection by Meier [148] are
not minimal.

11 The non-continuous semantics can already be expressed using negation semantics.

222 25 Models of Misuse Scenarios

Table 25.2 summarizes how the semantic requirements for misuse scenario model-
ing are met by signature-nets. For the detailed constructions refer to Meier [149].
Meier et al. also developed a signature language named Event Description Lan-
guage (EDL) to encode signature-nets. Using the Signature Analysis Module
(SAM), a prototypical implementation of a correlation algorithm using EDL,
Meier et al. have shown empirically that the complexity of identifying misuse
scenarios specified in an expressive language such as EDL, i.e. signature-nets,
can be handled very well in practice. Actually, signature-nets allow for several
general optimizations of the runtime evaluation, such that SAM outperforms
other implemented misuse detection approaches [152].

25.4 Limiting the Framework for Pseudonymization

In Sect. 25.2 we have summarized the semantic requirements for models of mis-
use scenarios to be useful in the context of misuse detection. Subsequently, in
Sect. 25.3 we have introduced a framework for modeling misuse scenarios using
signature-nets, which satisfies the requirements summarized in Sect. 25.2 (see
Table 25.2). Signature-nets have been introduced here in order to understand
the problem of pseudonymization of audit data for misuse detection. The con-
cepts for pseudonymization are developed in Chap. 26 and a pseudonymization
approach is described, where pseudonym disclosure contexts are derived from
given signature-nets and where pseudonym linkability is limited to the amount
that is necessary for audit data analysis.
To reduce the design complexity of an appropriate pseudonymization approach,
we do not consider arbitrary signature-nets. Rather, a limited subset of all pos-
sible signature-nets can be used as input for the knowledge extraction for pseu-
donym linkability and disclosure. For a given signature-net there is a set of
signature-nets in a restricted form, which – with the exception of unbounded
repetitions – retain the semantics of the original signature-net (see Sect. 25.4.1).
Note, that limiting the framework has three major impacts: First, for a given
signature-net there is a set of a possibly large number of signature-nets in the
limited form. As a result, the processing of the many signature-nets may turn
out to be inefficient in practice. Second, the semantics cannot be retained for all
possible signature-nets that can be formulated in the general framework, but only
minor restrictions apply. Third, and motivating the limitations of the framework,
a straightforward design for efficient pseudonymization is possible.

25.4.1 Serial Signature-nets

We define serial signature-nets as a restricted subset of all possible signature-
nets. In Chap. 26 pseudonymization will be demonstrated for serial signature-
nets, only.

25.4 Limiting the Framework for Pseudonymization 223

t5

t1 t2 t3

t4

.

.

.

.
.

+

Fig. 25.8. An example serial signature-net

Serial signature-nets are signature-nets with the following restrictions (see
Fig. 25.8):

• Only sequences are allowed with the following exception:
• Disjunctions that are connected to escape transitions are allowed.12

• All transitions are regular transitions.

These restrictions have several consequences that are considered useful for the
pseudonymization approach developed in Chap. 26:

• There is only one initial place and only one final place.
• Each transition has only one input place and one output place.
• The marking is always stable.
• An activating token set of a transition t contains exactly one token from the

input place of t. It is not necessary to unify activating token sets. Hence, a
token from the input place of t is an activating (unified) token, if it satisfies
the inter-event conditions of t w.r.t. the current event. The activating token
also is the input token.

• If a transition t occurs for a given activating (unified) token u from the input
place of t, u is a copy of the input token. The activating (unified) token u
may be modified by the token bindings of t before a copy of u (including the
new token bindings) is placed in the output place of t. If the input edge of t
is consuming, the input token is removed.

More explicitly, the following semantic aspects are not directly supported by
signature-nets:
12 All escape transitions use virtually the same escape output place. For usability rea-

sons it is allowed to model an arbitrary number of (virtually identical) escape places
(see t4 and t5 in Fig. 25.8).

224 25 Models of Misuse Scenarios

General disjunction (emulatable): General disjunctions can be emulated in se-
rial signature-nets. Emulation is necessary, to retain the semantics of token
removal, if a disjunction contains at least one consuming edge. For each
outgoing edge of a place there is at least a serial signature-net containing
this edge and the transition connected to a non-escape place (for transition
‘t1’ in Fig. 25.9a see serial signature-net (1) in Fig. 25.9b, and for ‘t2’ see serial
signature-net (2)). For such a given serial signature-net all other alternative
edges are connected to escape transitions (for transition ‘t1’ in Fig. 25.9a see
serial signature-net (2) in Fig. 25.9b, and for ‘t2’ see the serial signature-net
(1)). Escape transitions are retained (see transition ‘t3’ in Fig. 25.9a and the
serial signature-nets (1) and (2) in Fig. 25.9b).

t1

t2

t3

.

.

.
e3 e1 e2

(a) Signature-net fragment

t1

t2

t3

t1

t2

t3

.

.

e2

. . .

.

1) 2)

e3 e1 e2 e1e3

(b) Equivalent set of serial signature-nets

Fig. 25.9. Emulating disjunctions

Conjunction and spontaneous transitions (emulatable): Conjunctions can be
emulated using a set of serial signature-nets that enumerate all interleav-
ings of the concurrent threads of the conjunction (see Fig. 25.10). Note, that
concurrent threads are in practice modeled in a well-formed way, where the
threads are introduced by a fork transition and are synchronized by a join
transition (see ‘t1’ and ‘t4’ in Fig. 25.10a) [149].
Spontaneous transitions are in signature-nets only used for modeling the
joining of concurrent threads [149]. Serial signature-nets do not directly sup-

25.4 Limiting the Framework for Pseudonymization 225

port spontaneous transitions. However, they can be emulated by merging the
inter-event condition, the bindings and the actions of the spontaneous transi-
tion with those of the preceding regular transition of each serial signature-net
representing one of the interleavings of the conjunction (see how the labels
of transitions ‘t3’ and ‘t4’ from Fig. 25.10a are merged to form the label of
‘t3’ in serial signature-net (1) in Fig. 25.10b, and how the labels of ‘t2’ and
‘t4’ are merged for ‘t2’ in signature-net (2)).

t1

t2

t3

t4

. . .

e1

. . .

. . .

. . .
b2

e2

iac2

iec2

a2

b3

iac3

iec3

a3

b4

iec4

a4

e3 ε

(a) Signature-net fragment

1)

2)

t1 t3 t2

t1 t2 t3

. . .

e1

. . .

. . .

. . .
b2

iac2

iec2

e2

a2

. . .

e1

. . .

. . .

. . .
b3

e3

iac3

iec3

a3

b3, b4

e3

iac3

iec3 ∧ iec4

a3, a4

b2, b4

e2

iac2

iec2 ∧ iec4

a2, a4

(b) Equivalent set of serial signature-nets

Fig. 25.10. Emulating conjunctions and spontaneous transitions

Simultaneous (emulatable): In signature-nets this semantic aspect is expressed
using conjunctions and escape places [149]. Therefore, this aspect can be
emulated as suggested above for conjunctions.

Repetition (partially emulatable): Only bounded repetitions, where the static
number of repetitions can be computed in advance, can be represented by
unfolding cycles of the signature-net (see how transition ‘t2’ from Fig. 25.11a
is replicated n times in the serial signature-net in Fig. 25.11b). In Fig. 25.11
the emulation for the at least semantics of repetitions is depicted. The se-

226 25 Models of Misuse Scenarios

t 1

t 2

t 3

e 1

v
:=

c 0

..
.

..
.

..
.

e 2

v
:=

v
+

d

..
.

..
.

..
.

e 3 ..
.

..
.

..
.

v
≥

c 1

(a
)

Si
gn

at
ur

e-
ne

t
fr

ag
m

en
t

t 1
t 3

t 2
,1

t 2
,n

e 1

v
:=

c 0

..
.

..
.

..
.

e 2

v
:=

v
+

d

..
.

..
.

..
.

e 3 ..
.

v
≥

c 1

..
.

..
.

e 2

v
:=

v
+

d

..
.

..
.

..
.

(b
)

E
qu

iv
al

en
t

se
ria

ls
ig

na
tu

re
-n

et

F
ig

.
25

.1
1.

E
m

ul
at

in
g

re
pe

tit
io

ns
w

ith
at

lea
st

n
tim

es
se

m
an

tic
s,

w
he

re
c 1

=
c 0

+
n
·d

,n
∈

N

25.4 Limiting the Framework for Pseudonymization 227

mantics for exact repetitions and at most semantics can also be emulated
in serial signature-nets, also emulating the additional disjunctions. Refer to
Meier for the respective signature-nets [149].

Concurrency (emulatable): In signature-nets this semantic aspect can be ex-
pressed using sequences and conjunctions [149]. Therefore, this aspect can
be emulated as proposed above for conjunctions.

Instance selection: While selecting the first instance is the standard selection
mode for signature-nets, the modes last and all are expressed using un-
bounded repetitions [149]. Unbounded repetitions cannot be represented us-
ing serial signature-nets.

Summarizing, except for repetitions where the number of repetitions cannot
be computed in advance, which are also used to express the instance selection
modes last and all, all semantic requirements are satisfied by serial signature-
nets. Fortunately, the unsupported aspects are expected to be rarely used in
practice, if at all. Some semantic aspects are not directly supported, but they
can be emulated using disjunctive escape paths, enumerating all interleavings,
merging inter-event-conditions and unfolding cycles. Table 25.3 summarizes the
semantic aspects supported by serial signature-nets.

Table 25.3. Semantic requirements met by serial signature-nets. The most commonly
used mode of an aspect is emphasized

semantic requirement serial signature-net construct
sequence sequence
disjunction enumerate disjunctive pathes
conjunction enumerate interleaving pathes
simultaneous enumerate interleaving pathes, escape place
negation disjunction, escape place
exact repetition unfold cycle (only for static repetitions)
at least repetition unfold cycle (only for static repetitions)
at most repetition unfold cycle (only for static repetitions)
continuous default behavior
non-continuous disjunction, escape place
overlapping concurrency enumerate interleaving pathes
non-overlapping concurrency sequence
intra-event condition intra-event condition
inter-event condition inter-event condition
first step instance default behavior
last step instance — (unbounded repetition)
all step instances — (unbounded repetition)
consuming step consuming input edge
non-consuming step non-consuming input edge

228 25 Models of Misuse Scenarios

Note, that the emulations given above require that the original signature-net
is well-formed. Meier arguments that misuse scenarios that are actually useful
for misuse detection can be modeled by well-formed signature-nets. Meier also
introduces a notion of well-formedness of signature-nets [149].
Finally note, that serial signature-nets, as a sub-set of the more general signature-
nets, can already be encoded in EDL for misuse detection using SAM.

26

Pseudonymization Based on Serial
Signature-Nets

As motivated in Chap. 24, in this Chapter we introduce a refined approach
for pseudonymization based on the expressive serial signature-nets defined in
Chap. 25. The requirements, assumptions and trust model presented in Chap. 11
also apply to the refined approach. The trust model still is based on the architec-
ture depicted in Fig. 8.6b with the additional modification that the pseudonym
mapping is provided in the pseudonymity-layer (cf. Sect. 16.3), which is pro-
vided simultaneously with the pseudonymized application-layer audit data (see
Sect. 13.1). In contrast to Fig. 19.4 the response unit of the SSO-controlled IDS
is explicitly depicted in Fig. 26.1. Analysis reports are immediately reidentified
and made available to the response unit, which executes an appropriate response,
specified as an action in the corresponding serial signature-net.1

The pseudonymizer depicted in Fig. 26.1 uses the same models of misuse scenar-
ios as the analysis, which are specified as serial signature-nets. The pseudonymi-
zer extracts requirements for pseudonym linkability and pseudonym disclosure
from the serial signature-nets. Using the extracted knowledge the pseudonymizer
can anticipate which pseudonyms need to be linkable and under what conditions
pseudonyms need to be disclosed. For pseudonymization the pseudonymizer ba-
sically performs the same analysis on the audit data as the IDS, with some
modifications for pseudonymization. The increase in computational complexity
involved in performing basically the same analysis as the IDS is the price we
have to pay for generating pseudonyms that are tailored to the more expressive
serial signature-nets.
The IDS analysis engine needs to be made aware of where pseudonymized fea-
tures in the audit data are compared to clear-text values in intra-event condi-
tions of the given serial signature-nets. The analysis engine employs a minimal
companion pseudonym generator (see ‘p’ in Fig. 26.1) in order to pseudonymize
clear-text values on the fly while leveraging data in the pseudonymity-layer, such

1 Note, that the response unit could also be depicted in Fig. 19.4, but has been omitted,
because it is not necessarily part of an individual set-up of Pseudo/CoRe.

230 26 Pseudonymization Based on Serial Signature-Nets

user
analysis

response

site security
officer

audit component

service

pseudonymizer

reidentifier p

Fig. 26.1. Trust and control in the architectural model of the fine-grained approach

that the resulting pseudonyms can be compared to pseudonyms in the audit
data. Note, that the pseudonyms we propose do not interfere with the eval-
uation of inter-event conditions. During analysis the engine collects disclosure
information from the pseudonymity-layer data. Before an action is executed, the
pseudonymized parameters of the action are disclosed using the collected disclo-
sure information. The action can then be executed using the disclosed clear-text
parameters.
Both, the pseudonymizer and the analysis engine are configured to know a priori,
which features in the audit data are (to be) pseudonymized and which are not.
Features that are left in the clear are not pseudonymized by the pseudonymizer
and are processed by the analysis engine as if there was no pseudonymization
taking place. We therefore focus on the processing of pseudonymized features in
the following text.
In Chap. 27 and Chap. 28 pseudonym linkability and pseudonym disclosure are
separately examined in the context of serial signature-nets. The approach for
pseudonym generation is developed to carefully respect the requirements given
by the syntactical structure of audit records, by the given serial signature-nets
and by the analysis engine. Leveraging the knowledge in the serial signature-nets
both, pseudonym linkability and pseudonym disclosure can be tailored tightly
to the given serial signature-nets, such that pseudonyms are linkable only as
required for the purpose of audit data analysis, and pseudonyms can only be
disclosed, when the analysis engine executes an action for the purpose of an ap-
propriate response. Employing appropriate cryptographic primitives, pseudonym
linkability and pseudonym disclosure can be securely bound to the aforemen-
tioned purposes, such that an attacker cannot link pseudonyms, if the analysis
engine does not need to link the pseudonyms, and the attacker cannot disclose
pseudonyms, as long as the analysis engine does not need to execute an action.
Summarizing, this Part presents novel approaches for fine-grained and rigorous
technical purpose binding of pseudonym linkability (see Sect. 7.3) and controlled
pseudonym disclosure (see Sect. 7.2.2), leveraging knowledge in misuse scenario
models specified in an expressive modeling framework. Additionally, controlled
pseudonym disclosure subject to organizational purpose binding (see Sect. 7.2.1)
is securely integrated with technical purpose binding.

26 Pseudonymization Based on Serial Signature-Nets 231

The approaches presented in Chap. 27 and Chap. 28 for pseudonym linka-
bility and pseudonym disclosure require some further restrictions, such that
pseudonymized features can be evaluated by serial signature-nets:

• Token bindings are restricted to merely assign pseudonymized features to
token variables. Pseudonymized features cannot be aggregated, e.g. v := v ◦
f .2 Note, that this restriction does not limit the repetition semantics in serial
signature-nets, because the repetition counter variable value does not need
to be pseudonymized. Moreover, repetitions are unfolded, such that counting
repetitions is unnecessary (see Sect. 25.4.1).

• It is not allowed to rename variables to which pseudonymized features have
been assigned, e.g. v1 := v2. Despite this restriction, it should be possible
to express all useful models of misuse scenarios. Moreover, this restriction
can be relaxed by extending the algorithm for linkability extraction given in
Sect. 27.1, such that variable-to-variable assignments are represented in the
linkability graph.

In addition to these restrictions, the approach presented in Chap. 27 for
pseudonym linkability requires some limitations for features that need to be
pseudonymized in serial signature-nets:

• Intra-event condition comparators are restricted to testing if some
pseudonymized feature equals some constant value, and if two pseudonymized
features equal in the current event.

• Inter-event condition comparators are restricted to testing if some
pseudonymized feature equals the pseudonymized value of some token vari-
able, and if the pseudonymized values of two token variables are equal.

That is, pseudonymized features or variable values cannot be compared to clear-
text features or variable values. Hence, when specifying, which features need
to be compared, one has to decide whether both or none of them shall be
pseudonymized. This restriction can be removed by extending the linkability
extraction algorithm given in Sect. 27.1, treating features and variable values
that are compared with clear-text features or variable values as proposed for
clear-text comparisons of intra-event conditions.
The summarized restrictions are motivated in some detail in Chap. 27 and
Chap. 28.

2 It seems possible that pseudonyms can be generated by homomorphically encrypting
the features to be concealed, such that several operations can be performed on the
pseudonyms, and the results apply also to the decrypted pseudonyms, i.e. the original
features. This approach could be investigated to overcome the described limitation.
However, in this book homomorphic encryption is not considered.

27

Pseudonym Linkability

Section 7.3 motivates the objective of minimizing the use of a given pseudonym
in order to reduce the working surface of an attacker for uncontrolled pseudonym
disclosure. Moreover, the magnitude of the transitive closure of pseudonymized
features that are linkable to a given pseudonym has a proportional impact, if
this pseudonym is disclosed, irrespective of the fact that disclosure occurred
in a controlled or in an uncontrolled way. That is, the smaller the magnitude
of the transitive closure of pseudonymized features is, which are linkable to the
disclosed pseudonym, the lower is the undesirable impact of its disclosure. Hence,
it is desirable to reduce the linkability of pseudonymized features in audit data
for misuse detection.
A rigorous solution to the challenge of reducing linkability is technically binding
the linkability of pseudonyms to the purpose of audit data analysis for misuse
detection (cf. Sect. 7.3). To formulate such a solution it is necessary to investigate
the aspects of audit data analysis that inter-relate with the linkability of features
in audit data.
Considering serial signature-nets as the model of choice for expressing misuse
scenarios, it can be seen that the content of audit records is processed when tran-
sitions are considered for activation and when transitions occur (see Sect. 25.3.5).
When a transition occurs, its token bindings are performed by assigning features
to token variables (see Sect. 25.3.3 and Sect. 25.3.4). It can be assumed that
token bindings are used for three reasons, only. First, the feature bound to the
variable is a parameter of the decision what transitions are activated later on.
Second, the feature is a parameter of a transition action. Third, the feature
value needs to be aggregated with some other values and the aggregate value is
important for the first or the second case.
In the latter two cases, not merely the linkability of the feature is of inter-
est, rather the value of the feature is the important factor. In the context of
pseudonymization the value of a pseudonymized feature is generally not usable
for mathematical operations except for testing two pseudonymized features for

234 27 Pseudonym Linkability

equality.1 More precisely, the value of a pseudonymized feature is opaque until
the original feature concealed by the pseudonym is disclosed. These considera-
tions are examined in Chap. 28. Naturally, it is not useful to directly compare
pseudonymized features with clear-text features.
If the inter-event condition of some transition compares the pseudonymized fea-
ture stored in a token variable with some pseudonymized feature in the current
event or stored in another token variable, pseudonymization must respect that
the same pseudonym is assigned to the same feature in both events. In that
case, the pseudonyms are linkable and inter-event conditions work irrespective
of pseudonymization. This also applies, if an intra-event condition compares two
pseudonymized features in the current event. The features that need to remain
linkable after pseudonymization, because they are subject to token bindings or
transition conditions, are denoted as pseudonym-linkable features or PL-features.
A straightforward solution is to exploit the knowledge about transition conditions
and token bindings in the given serial signature-nets in order to determine, which
PL-features need to be linkable (see Sect. 27.1). During the pseudonymization
of features that need to be linkable, the (pseudo-randomly chosen) pseudonym
is committed to memory, when a feature is subject to the first token binding.
From then on this pseudonym is used, if the same feature occurs in later events
as a feature that needs to be linkable (see Sect. 27.3).
When transitions are considered for activation, also intra-event conditions are
evaluated, such that features in the current event are compared to constant values
defined in the condition (see Sect. 25.3.3). These features are denoted as clear-
text-linkable features or CL-features. To CL-features applies a different rationale
than to PL-features. The pseudonym of a CL-feature may be chosen arbitrarily,
if it is feasible to pseudonymize the corresponding constant value during audit
data analysis immediately before it is compared to the pseudonym. Hence, if
CL-features are pseudonymized, the misuse detection engine must be enabled to
pseudonymize constant values during audit data analysis (see ‘p’ in Fig. 26.1).
As described above, in order to allow pseudonymized audit data to be analyzed
for misuse scenarios, some linkability needs to be retained. Even if linkability is
reduced to the amount necessary for analysis purposes, it still represents a work-
ing surface for an attacker, albeit a much smaller one. The following linkability
remains as an artefact of technical purpose binding of linkability:

PL-features: The linkability of PL-features may allow an attacker to exploit the
transitivity of linkability in order to disclose pseudonyms. However, pseudo-
nyms of PL-features are generated by the pseudonymizer to be linkable to
pseudonyms of certain PL-features only (see Sect. 27.1). Hence, dictionary
attacks can be avoided for PL-features (see Sect. 7.2.5).

1 If the pseudonyms are generated by homomorphically encrypting the features to be
concealed, several operations can be performed on the pseudonyms, such that the
results apply also to the decrypted pseudonyms, i.e. the original features. However,
in this book homomorphic encryption is not considered.

27.1 Extracting Linkability Requirements from Serial Signature-nets 235

CL-features: This is not the case for CL-features, because the IDS needs to be
able to compare clear-text values to arbitrary pseudonyms of CL-features.
Hence, CL-features inherently provide the attacker with the ability to per-
form dictionary attacks.2

Note, that a feature may simultaneously be a PL- and a CL-feature, such that
the possibility for a dictionary attack extends to the transitive closure of the
feature. Apart from the linkability sustained for audit data analysis, knowledge
about the semantics of audit data induces additional linkability:

Event semantics: Some events describe operations that semantically link their
operands. For example the BSM event type AUE_RENAME links the old name
of a file to its new name. If we can disclose the file’s pseudonyms for its new
name we can also link the undisclosed pseudonyms of the old name to the
same file.

Section 27.1 describes how requirements for pseudonym linkability can be ex-
tracted from a given set of serial signature-nets, such that the capability to
analyze the audit data is sustained despite pseudonymization. Primitives that
can be used to operationalize pseudonym generation are proposed in Sect. 27.2.
Section 27.3 describes how the extracted linkability requirements and pseudo-
nym generation are coordinated to pseudonymize application-layer audit data.
Finally, Sect. 27.4 shows how pseudonymized audit data can be analyzed for
misuse detection.

27.1 Extracting Linkability Requirements

While it is possible to generate two or more distinct pseudonyms for a given
feature, these pseudonyms are linkable in the case they are all used to replace the
feature in the same audit record. Obviously, all of these distinct pseudonyms still
represent one and the same feature in the audit record and are thus inherently
linkable by exploiting knowledge about the syntactical structure of audit records.
Based on the argument that multiple pseudonyms for a given feature in a given
audit record do not decrease the overall linkability of the feature, it is sensible
2 Note, that it is not possible to pseudonymize the constants in intra-event conditions

a priori, because in our attacker model the attacker knows the original constant
values, too, and can then disclose the corresponding pseudonyms immediately. If we
assume that the attacker knows only the pseudonymized signatures, for CL-features
merely subject-pseudonyms could be used. This is highly undesirable, because then
all pseudonyms for a given CL-feature are always linkable. The best achievable so-
lution is that the pseudonyms of CL-features become only linkable in the case that
a matching clear-text value has been found. A clear-text value may be found during
the evaluation of an intra-event condition, or by means of a dictionary attack.

236 27 Pseudonym Linkability

to replace a given feature with only one pseudonym in a given audit record.
Additionally, when a pseudonym is chosen for a PL-feature in a given audit
record, the choice must be carefully coordinated with the choice of the pseudonym
for the same feature in other audit records. Otherwise the linkability required for
audit data analysis may not be retained completely, resulting in false negatives
during the analysis of the audit data. Conversely, if two different PL-features are
replaced with the same pseudonym, false positives may occur during audit data
analysis.
This problem can be solved by tracing linkability requirements from the point
where they are specified, back to the origin where pseudonyms are initially cho-
sen. Linkability requirements are specified by transition conditions testing fea-
tures for equality. For a given feature that is tested for equality always the same
pseudonym must be used in all events where the feature is extracted. The linka-
bility requirements can be extracted based on the knowledge about the seman-
tics of token bindings and transition conditions and the syntactical equality of
variable names and feature types. Additionally, based on syntactical knowledge
about the structure of audit records, linkability is constrained, such that a given
feature is not replaced with more than one pseudonym in a given audit record.
In the following, the transitions and feature types used in the finite set N of
given serial signature-nets are represented as vertices of an undirected graph G =
(T,C), where T and C are finite. Two vertices τ1 ∈ T and τ2 ∈ T are connected
by an edge (τ1, τ2) ∈ C where the pseudonyms need to be generated consistently,
when the transition(s) represented by τ1 and τ2 occur(s). Two pseudonyms p1

and p2 are consistent, if f1 = f2 ⇒ p1 = p2, where f1 and f2 are the original
features that are replaced by p1 and p2, respectively. The connected components
of G represent the classes of transitions where pseudonyms for certain feature
types need to be generated consistently. Identifying all connected components of
G can be implemented efficiently [168]. In the following, the definition of vertices
and the rules for connecting vertices by edges are described in detail.
Vertices τ ∈ T are defined as tuples (I, S,O,O), where I is the finite set of
transition identifiers used in N , S = {bvf, cvf, cff, cvv} describes the semantics
of the respective transitions (see below), and O = F ∪ V names the feature
type(s) and token variable(s) that are subject to the semantics in S. V is the
finite set of token variable names used in N , and F is the finite set of feature
types used in N . Note, that a feature type is a combination of an event type and
a feature designator (see Sect. 12.1.1) and that F therefore represents a global
name space w.r.t. N . Token variable names usually are chosen locally for each
serial signature-net, such that they are extended with a signature identifier to
form a global name space w.r.t. N . The transition identifiers in I that refer to
transitions in the same serial signature-net are ordered in the sense that if i1 < i2
then the position of the transition for i1 is left to the position of the transition
for i2 in the serial signature-net. I is a global name space w.r.t. N .
As described in Chap. 27 we can assume that pseudonymized features cannot
be aggregated. To simplify the further considerations, it is assumed that it is

27.1 Extracting Linkability Requirements from Serial Signature-nets 237

not necessary assigning the value of one variable to another variable to be able
to model useful serial signature-nets. With this restriction, it is sufficient to
consider the following transition semantics in order to determine the linkability
requirements and constraints:

bvf : A token binding of transition i reads a feature type f directly from an audit
record and assigns the feature to the token variable v: τ = (i, bvf, v, f).

cvf : An inter-event condition of transition i reads a feature type f directly from
an audit record and tests if the feature equals the value of the token variable
v: τ = (i, cvf, v, f).

cff : An intra-event condition of transition i reads two feature types f1 and
f2 directly from an audit record and tests if the features are equal: τ =
(i, cff, f1, f2).

cvv: An inter-event condition of transition i tests if the values of the two variables
v1 and v2 are equal: τ = (i, cvv, v1, v2).

Note, that a given transition may be represented by one or more vertices, e.g. if
the transition uses inter-event conditions as well as token bindings.
There are two necessary conditions that need to be met, such that two vertices
τ1 and τ2 can be connected by an edge (τ1, τ2):

NL1) At least one of the vertices represents a transition that directly reads a
feature type from an audit record, e.g. τ = (·, bvf, ·, ·).3 If no feature type
is accessed in an audit record, also no pseudonym will be generated, i.e.
considering linkability of pseudonyms is obsolete.

NL2) The vertices τ1 and τ2 represent (a) transition(s) that use(s) a common
operand, e.g. τ1 = (·, bvf, v, ·) and τ2 = (·, cvf, v, ·). If there is no common
operand, no direct dependence w.r.t. linkability can be derived by considering
the two vertices.

If at least one of the necessary conditions is not satisfied, τ1 and τ2 will not
be directly connected by an edge. However, they still may be part of the same
connected component of G, i.e. transitive linkability dependencies may exist.
There are two sufficient conditions, such that two vertices τ1 and τ2 are connected
by an edge (τ1, τ2):

SL1) Both vertices represent (a) transition(s) that directly read(s) the same
feature type, e.g. τ1 = (·, bvf, ·, f) and τ2 = (·, cvf, ·, f).
The reason that the pseudonym for this feature type must be consistent is
that the vertices may represent the same transition or transitions that occur

3 The symbol ‘·’ is used like a wild-card symbol acting as a placeholder for arbitrary
appropriate symbols.

238 27 Pseudonym Linkability

virtually simultaneously. Hence, they may read from the same audit record,
such that the linkability constraint described above holds.

SL2) The vertices represent two transitions in the same serial signature-net,
where the one transition indirectly reads a feature type with the help of the
other transition, i.e. where the first transition directly reads a feature type
and assigns the feature to a common variable, before the second transition
uses the variable value.
Expressed more concisely, if there are three vertices τa = (ia, bvf, v, fa),
τb = (ib, bvf, v, fb) and τc = (ic, cv·, v, ·), then τc is connected to τj ∈ {τa, τb},
if the distance d(ij , ic) = ic − ij is minimal and d(ij , ic) > 0. The transition
represented by τc depends on the linkability of the pseudonym chosen for the
feature when the transition represented by τj occurred.
For example, if ia = 2, ib = 4, ic = 7, then da = d(ia, ic) = 5 > 0 and
db = d(ib, ic) = 3 > 0 and da > db. In this example τc is connected to τb.
Another example: ia = 2, ib = 9, ic = 7, then da = d(ia, ic) = 5 > 0 and
db = d(ib, ic) = −2 < 0 and da > db. In this example τc is connected to τa,
since db < 0.
Note, that due to the naming convention for variable names defined above,
a common variable name referenced by two vertices implies that the vertices
represent (a) transition(s) in the same serial signature-net.

Concerning the above four conditions some remarks can be made. SL1 as well as
SL2 implicitly satisfy NL1 and NL2. When listing all combinations of semantics
of vertices that satisfy NL1 and NL2, the following pairs of vertices will not be
connected, as defined by SL1 and SL2:

• Two vertices with inter-event condition semantics are not connected, if they
use a common variable but do not access the same feature type. Considering
the inter-event conditions alone it cannot be decided, if the variable(s) is/are
actually bound by earlier vertices. If they are bound, a connection of the two
vertices were redundant together with the connections to the variable binding
vertices. If the variables are not bound, there are no linkability requirements
for the variable values.

• If the token binding of a variable is performed after the variable is used
(d < 0), the use of the variable represents no indirect access of the feature,
which is bound later on. Hence, no linkability requirements exists for the
common variable. Note, that for d = 0 both vertices represent the same tran-
sition. That is, the token binding is performed after the inter-event condition
is evaluated, such that no linkability requirements exist for the common vari-
able.

Consider the example serial signature-net n1 in Fig. 25.4 without a marking. The
token binding of t1 in Fig. 25.4 is represented by τ1 = (1, bvf, (n1, v), (e1, oid))

27.2 Primitives for Technical Purpose Binding of Linkability 239

in Fig. 27.1 and the inter-event condition of t2 is represented by τ2 =
(2, cvf, (n1, v), (e2, oid)). Note, that the transition identifiers have been chosen
arbitrarily, but respecting the order of the transitions. Moreover, the variable
names have been extended with the signature identifier n1 and the feature types
are combinations of event types and feature designators. The vertices τ1 and
τ2 satisfy the sufficient condition SL2 and therefore are connected. Note, that
the vertices do not satisfy SL1 due to distinct feature types. All pseudonyms
for feature types in a connected component of the graph need to be generated
consistently, i.e. the pseudonyms for (e1, oid) and for (e2, oid) must be generated
such that they are linkable, if they represent the same feature.

τ1 τ2

2, cvf, (n1, v), (e2, oid)1, bvf, (n1, v), (e1, oid)

Fig. 27.1. A linkability graph for the serial signature-net in Fig. 25.4

27.2 Primitives for Technical Purpose Binding of
Linkability

We propose to use a cryptographic collision-resistant hash-function h(), and a
pseudo-random number generator r() to generate pseudonyms for features.
For a given PL-feature F that needs to be concealed, the pseudonym p := h(s|F)
is generated. For PL-features the salt s is used to control the linkability of the
pseudonyms. If the linkability of several occurrences of a given feature in different
events is necessary, the same salt s is chosen in order to generate compatible,
i.e. content-linkable, pseudonyms. Conversely, if a given feature needs not to be
linkable to any of its occurrences in other events, a different salt is chosen. This
can be done pseudo-randomly, such that s := r(), as long as the value range
for s is sufficiently large, i.e. the probability that the resulting pseudonyms are
compatible is negligible.4 Finally, the pseudonyms for two distinct features will
automatically be generated to be different, except for the case that a collision of
h() occurs. Then, for distinct features and for distinct salts identical pseudonyms
may be generated, which may cause a false positive during audit data analysis.
However, due to the nature of h() the probability of collision occurrences is
negligible, too.5

4 The occurrence of duplicate salts can be avoided entirely by committing all used
salts to memory and by checking for duplicates.

5 If the value range for a pseudonym is restricted due to the format requirements of the
audit data, duplicate pseudonyms can be avoided by holding all used pseudonyms
in memory and by checking for duplicates.

240 27 Pseudonym Linkability

For PL-features only the pseudonymizer knows the salts that it used to gener-
ate the corresponding pseudonyms. Any other observer who does not know the
salts, i.e. the IDS or an attacker, can gain only the following information when
observing the generated pseudonyms (assuming that no collisions occur for h()):
If two given pseudonyms are content-linkable, they represent the same concealed
feature. If two given pseudonyms are different, either the corresponding features
are different, or distinct salts were used to generate the pseudonyms. That is,
for distinct pseudonyms it cannot be decided if they represent the same feature
or distinct features. This property together with the one-way property of h() en-
force the purpose binding of pseudonym linkability in a secure way, i.e. it cannot
be circumvented by an attacker.
For a given CL-feature F that needs to be concealed, the pseudonym p := h(s|F)
is generated just like for a PL-feature, but the salt s is made available, such that
it can be used to pseudonymize any clear-text value c to be compared with p:
h(s|c) == p. If the CL-feature is also a PL-feature, s is chosen as described for
PL-features. Otherwise the salt is chosen pseudo-randomly s := r(). Note, that
providing the s enables an attacker to mount a dictionary attack.
A feature can simultaneously be a PL-feature and a CL-feature. In that case s
is chosen like for a PL-feature and is made available like for a CL-feature.
The pseudonym p for a given feature F , where F is not a CL-feature and not
a PL-feature, is chosen pseudo-randomly, such that p := r(). Due to the nature
of r() the probability that p matches an already existing pseudonym (possibly
causing a false positive during audit data analysis) is negligible.6

Linkability in audit data is usually required to perform various kinds of
tests in inter- and intra-event conditions. Due to the proposed approach to
pseudonymization merely PL- and CL-features can be tested only for equal-
ity/difference where required by inter- and intra-event conditions. Other tests
are not supported by the proposed approach for pseudonymization.

27.3 Operation of the Pseudonymizer

In the following the operation of the pseudonymizer is described, focusing on
the aspects of pseudonym linkability only. The pseudonymizer requires a priori
knowledge specifying, which features need to be pseudonymized in the audit data.
Also, the pseudonymizer needs to know the format of the features in order to
appropriately encode pseudonyms. Moreover, the format of pseudonymity-layer
data needs to be specified, such that it can be embedded in the application-
layer audit data. Note, that this a priori knowledge is the same as used for the
pseudonymization approach presented in Part III.
6 If the value range for a pseudonym is restricted due to the format requirements of the

audit data, duplicate pseudonyms can be avoided by holding all used pseudonyms
in memory and by checking for duplicates.

27.3 Operation of the Pseudonymizer 241

Unlike that approach, here the pseudonymizer uses the same serial signature-
nets as the IDS to determine, where linkability is necessary for pseudonyms.
While this knowledge is manually provided in the approach in Part III, here it is
automatically derived from the models of misuse scenarios during initialization.
To do this, the pseudonymizer constructs the graph G and identifies its connected
components as described in Sect. 27.1.
For each connected component the pseudonymizer initializes a pseudonym map-
ping table, where an entry of the table has the form 〈F, s, h(s|F)〉. A mapping
entry associates a clear-text feature F with the salt s chosen to compute the pseu-
donym h(s|F). A given pseudonym mapping comprises all features that need to
be pseudonymized in a consistent way. For a given feature the salts and pseudo-
nyms stored in different pseudonym mappings of different connected components
of G differ with high probability. As a result, pseudonym linkability is reduced
where no compatibility is required for pseudonyms.
The pseudonymizer takes the original audit data as its input and outputs the
pseudonymized audit data as well as the pseudonymity-layer data. During opera-
tion the pseudonymizer processes the next audit record from the queue of incom-
ing audit records, just like the IDS. The processing differs only slightly from the
processing of the analysis engine of the IDS. The pseudonymizer additionally lo-
cates features that need to be pseudonymized and carefully generates appropriate
pseudonyms. After replacing the original features with the corresponding pseu-
donyms and providing salts for CL-feature tests in the pseudonymity-layer, the
pseudonymizer forwards the pseudonymized audit data and the pseudonymity-
layer data to the IDS. That is, the pseudonymizer does not execute actions when
(partial) complex events occur.
For a given current audit record the pseudonymizer executes the process of tran-
sition activation for all serial signature-nets. Before the activated transitions may
occur, the pseudonymizer identifies the features that need to be pseudonymized
and generates appropriate pseudonyms as follows.
For a given feature F that needs to be pseudonymized, the pseudonymizer de-
termines if F is a PL-feature and/or a CL-feature w.r.t. the set of activated
transitions. The salt and the pseudonym for F are initially undefined.

• If F is a PL-feature, the pseudonymizer chooses any activated transition t in
the context of which F is a PL-feature and then chooses any vertex τ that
represents t with the feature type f of F . Note, that it does not matter which
transition and which representing vertex is chosen, because all possible re-
sulting vertices are connected (due to SL1). Hence, for both searches the first
matching result can be used. The pseudonymizer then locates F in the pseu-
donym mapping that is associated with the connected component containing
τ . If F is found, the pseudonymizer uses the salt s and the pseudonym p that
are associated with F in its pseudonym mapping entry. If there is no entry for
F , the pseudonymizer computes s := r() and p := h(s|F), while respecting

242 27 Pseudonym Linkability

the specified format of the feature type and of the pseudonymity-layer data,
and inserts 〈F, s, p〉 in the pseudonym mapping.

• If F is (also) a CL-feature, the pseudonymizer checks if the salt is defined. If
it is, F is also a PL-feature and s and p have already been chosen appropri-
ately. If not so, the pseudonymizer computes s := r() and p := h(s|F) while
respecting the specified format of f and of the pseudonymity-layer data. Sub-
sequently, the pseudonymizer inserts 〈p, s〉 in the pseudonymity-layer data.7

• If F is neither a PL-feature nor a CL-feature, the pseudonymizer computes
p := r(), while respecting the specified format of the feature type. Note, that
even if no transitions are activated, this case ensures that features are still
pseudonymized.

Note, that the choice of p here depends on the set of activated transitions. As a
result, pseudonym linkability is only established where required by the current
state of the analysis. That is, the static analysis of the signature-nets restricts
pseudonym linkability to the amount necessary in principle for all possible states
of audit data analysis. This amount of pseudonym linkability is further restricted
during run-time to the actually required amount at any given moment.
After choosing an appropriate pseudonym, the pseudonymizer pushes the pair
〈f, p〉 on a stack and examines the next feature that needs to be pseudonymized.
After pseudonyms have been chosen for all these features, the pseudonymizer
lets all activated transitions occur. After transition occurrence, the pseudony-
mizer pops the pairs from the stack and replaces each clear-text feature – as
identified by its feature type f and specified to be pseudonymized – by the cor-
responding pseudonym. When the current event has been processed completely,
the pseudonymized audit record and the pseudonymity-layer data is provided to
the IDS, and the next event from the queue is processed.
Note, that the pseudonymizer does not modify the operation of the serial
signature-nets, and the serial signature-nets operate on the unpseudonymized
audit data. Only after an event has been completely processed by the serial
signature-nets, it is pseudonymized.
The process of application-layer audit data pseudonymization is illustrated in
Sect. 27.3.1.

27.3.1 Example Operation of the Pseudonymizer

In Fig. 27.2 we recapitulate the example serial signature-net from Fig. 25.4 and
the corresponding linkability graph from Fig. 27.1 and demonstrate the opera-
tion of the pseudonymizer using this simple example. During initialization the
7 For implementation there needs to be a mechanism that establishes the linkage

between the current pseudonymized event and the salt values for this event (cf.
Sect. 19.2.1).

27.4 Operation of the Analysis Engine 243

pseudonymizer loads the a priori knowledge including the serial signature-nets.
Then, the pseudonymizer constructs the linkability requirements graph G and
associates the connected component of the graph with an empty pseudonym
mapping. After initialization the pseudonymizer is ready to process incoming
audit records. Each audit record is processed separately and at first the embed-
ded event is extracted from the current audit record. Fig. 27.2 depicts two events
with the event type e1 and e2. When the first event is processed, transition t1 is
activated. The pseudonymizer is configured to pseudonymize the feature types
(e1, oid) and (e2, oid). The feature 5 in the current event e1 is a PL/CL-feature
w.r.t. t1. The vertex τ1 represents t1 and the feature type (e1, oid) in G. The
pseudonymizer chooses τ1 and locates the empty pseudonym mapping that is
associated with the connected component containing τ1. Then, the salt s = 3
is pseudo-randomly chosen by the pseudonymizer and the pseudonym h(3|5) is
computed. The triple 〈5, 3, h(3|5)〉 is stored in the pseudonym mapping. The salt
s is labeled with p and inserted in the pseudonymity-layer data: 〈h(3|5), 3〉. The
pseudonymizer also provides appropriate linkage between the salt and the cor-
responding pseudonym in the current application-layer audit record (not shown
in Fig. 27.2). After pushing the pseudonym on the stack, t1 occurs and assigns
the clear-text feature 5 to the token variable v. Then, the pseudonymizer pops
the pseudonym h(3|5) from the stack and replaces the feature 5 in the original
event with h(3|5). This finishes the processing of the first event and the second
event is processed. Since the token variable value v : 5 satisfies the inter-event
condition of transition t2, t2 is activated. The pseudonymizer determines that the
feature type (e2, oid) needs to be pseudonymized, and that the feature oid : 5 is
a PL-feature w.r.t. t2. Using τ2 the pseudonymizer locates the pseudonym map-
ping entry for the feature 5, and pushes the corresponding pseudonym h(3|5)
on the stack. After t2 occurred, the pseudonym is popped from the stack and
replaces the original feature in e2. Figure 27.2 depicts the linkability require-
ments graph G for the serial signature-net n1 and the connected component of
G, as well as the state of the pseudonym mapping after the processing of the two
events. Also n1 and its marking are depicted in addition to the two events in
their original form and in the pseudonymized form, as well as the corresponding
pseudonymity-layer data.

27.4 Operation of the Analysis Engine

In the following, the operation of audit data analysis is described, focusing on
the aspects of pseudonym linkability, only. Only the necessary extensions are
pointed out, such that pseudonymized audit data can be analyzed. The analysis
engine merely needs to know, which CL-features are pseudonymized and what
the format of the pseudonymity-layer data is. If during the process of transition
activation for an event e (see Sect. 25.3.5) an intra-event condition evaluates
the value of a pseudonymized CL-feature p = h(s|F), the engine locates the

244 27 Pseudonym Linkability

t2t1

e1 oid : 5 e2 oid : 5

e1 oid : h(3|5) e2 oid : h(3|5)

v : 5 v : 5

connected component of G

with its pseudonym mapping

true

e1

oid! = 0

v := oid

v == oid

e2

true

alert(v)

5, 3, h(3|5)

G :

τ1 τ2

1, bvf, (n1, v), (e1, oid)

〈h(3|5), 3〉

+ +

original events:

pseudonymized events:

pseudonymity-layer:

n1 :

2, cvf, (n1, v), (e2, oid)

Fig. 27.2. Example operation of the pseudonymizer (only linkability)

salt s corresponding to p in the pseudonymity-layer data. Using s, the analysis
engine can pseudonymize the clear-text value c in the intra-event condition as
pc = h(s|c) and test whether pc = p. Due to the nature of h() holds that
c = F ⇔ h(s|c) = h(s|F) and c �= F ⇔ h(s|c) �= h(s|F).8 Ignoring the aspect of
pseudonym disclosure, there are no further extensions necessary to the analysis
engine to cope with pseudonymized audit data. Note, that without pseudonym
disclosure the transition actions will use the pseudonyms instead of the original
features.
The process of analyzing pseudonymized audit data is illustrated in Sect. 27.4.1.

8 The undesirable case that c �= F while pc = h(s|c) = h(s|F) = p constitutes a
collision of h() and may lead to a false positive. However, the probability of this
case is negligible, if the value range of p and pc is sufficiently large. If this is not
the case, collisions can be avoided by testing each generated CL-feature pseudonym
p = h(s|F) against the pseudonymized clear-text value pc = h(s|c). If F �= c, but
h(s|F) = h(s|c), then a new salt s is chosen and p is recomputed.

27.4 Operation of the Analysis Engine 245

t2t1

e1 oid : h(3|5) e2 oid : h(3|5)

v : h(3|5) v : h(3|5)

true

e1

v == oid

e2

true

alert(v)

〈h(3|5), 3〉

+ +

pseudonymity-layer:

pseudonymized events:

oid! = 0

v := oid

n1 :

Fig. 27.3. Example operation of the analysis engine (only linkability)

27.4.1 Example Operation of the Analysis Engine

Continuing the example from Sect. 27.3, we consider that the pseudonymized au-
dit data and the pseudonymity-layer data has been made available to the analysis
engine of the IDS for misuse detection. The basic functionality of the analysis
engine is described by the given serial signature-nets. For the example we fo-
cus on the serial signature-net n1 in Fig. 27.3. When the first pseudonymized
event is processed, the analysis engine detects that the event type e1 is rele-
vant for transition t1 and that t1 evaluates an intra-event condition using the
pseudonymized CL-feature h(3|5). Thus, the analysis engine uses h(3|5) and the
linkage between the pseudonym in the current application-layer audit record
and the pseudonymity-layer data (not shown in Fig. 27.3) to locate the salt
s = 3. Then, the clear-text value 0 is pseudonymized as p0 = h(3|0). The test
h(3|0) �= h(3|5) returns true, i.e. the intra-event condition is satisfied and t1 can
occur. When t1 occurs, the pseudonym h(3|5) is assigned to the token variable
v. After processing the first event, the second event is considered for transition
activation. Since the event type e2 is relevant for transition t2, the inter-event
condition of t2 is evaluated. During the evaluation, the value of v and of the
pseudonymized feature h(3|5) are compared. The test h(3|5) = h(3|5) returns
true, such that t2 can occur. Since pseudonym h(3|5) cannot be disclosed, the
alert() action is executed using the pseudonym as parameter. Figure 27.3 de-
picts the serial signature-net n1 and its marking after the processing of the two
pseudonymized events.

28

Pseudonym Disclosure

The approach for pseudonym generation described in Chap. 27 is designed such
that it does not interfere with the analysis of audit data using serial signature-
nets. The aspect of linkability of pseudonyms is focused on the given audit data
alone, while respecting the state of serial signature-nets. However, it is not nec-
essary to extend the state of the serial signature-nets. Though the pseudonyms
are carefully chosen, such that the analysis of pseudonymized audit data is still
feasible, the aspect of accountability or controlled pseudonym disclosure is miss-
ing.
Technical purpose binding of the controlled disclosure of pseudonyms in au-
dit data has been introduced in Sect. 7.2.2 and a coarse-grained approach has
been presented in Chap. 13. In contrast to the linkability aspect the disclosure
aspect can be designed independently from the audit data by introducing the
pseudonymity-layer (cf. Sect. 13.1). Moreover, disclosure contexts are coupled to
the process of misuse scenario detection, i.e. the state of the analysis process.
Under optimal conditions the disclosure contexts are models of misuse scenarios,
such that pseudonyms are only disclosed, if a misuse scenario is detected. How-
ever, the set-based model proposed in Part II cannot describe misuse scenarios as
fine-grained as (serial) signature-nets. Hence, the more coarse-grained set-based
disclosure contexts allow pseudonym disclosure also in situations, where a more
fine-grained (serial) signature-net would not have triggered an action. In the fol-
lowing, the basic ideas from the approach developed in Part II are refined to
achieve a tight coupling between disclosure contexts and misuse scenario mod-
els. As it turns out, the tighter coupling requires some extensions to the state of
serial signature-nets, which are specifically necessary for pseudonym disclosure.
As demonstrated in Chap. 27, the process of audit data analysis can be carried
out without arranging for pseudonym disclosure. The need for pseudonym disclo-
sure arises where an appropriate response to analysis results must be generated.
A response may create a feedback to the observed system, either directly, or via
the decision and action of the site security officer (SSO). A feedback to the ob-

248 28 Pseudonym Disclosure

served system necessarily references principals or objects in that system, which
in the given approach cannot be referenced in a pseudonymous way.1 Therefore,
pseudonyms in analysis results must be disclosed, before the results can be used
for a response.
In the framework of (serial) signature-nets, analysis results are interfaced to
response components by means of transition actions (see Sect. 25.3.3 and
Sect. 25.3.5). Hence, pseudonyms in action parameters must be disclosed before
the actions are executed. Actions may be parameterized using constant values,
variable values and features from the current event. Constant values are already
available as clear-text in the specification of the given serial signature-nets. Con-
sequently, the investigation of pseudonym disclosure focuses on variable values
and features.
In the following, a feature is denoted as a disclosure feature or D-feature, if it is
a parameter of some transition action(s). This can be the case if (1) a feature of
the current event is used as an action parameter, or if (2) the feature is assigned
to a variable v during the token binding of a transition t1, and if v is a parameter
of an action of a later transition t2. The transition with the action in its label is
denoted as a disclosure transition. Note, that a disclosure transition may disclose
several D-features simultaneously, where the D-features may have been assigned
to variables by several other transitions.
It could be argued that it makes not much sense to pseudonymize features that
will be immediately disclosed during analysis (see case (1) above). Considering
information for pseudonym disclosure to be separated from the audit data, it
may be useful to pseudonymize such features. The pseudonymized audit data
could be given to third parties without providing the disclosure information in
the pseudonymity-layer. While the third parties can analyze the pseudonymized
audit data, they cannot determine the original features, because only the missing
(pseudonymity-layer) data provides information about the original features.
The approach for pseudonym disclosure proposed in the following allows to ex-
press disclosure conditions in the framework of serial signature-nets. When a to-
ken activates a disclosure transition, only those pseudonymized D-features that
are used when the action of the current transition is executed, are disclosed.
A token may contain further pseudonymized D-features that are not disclosed
for the actions of the current transition, but when a later disclosure transition
occurs. A token represents an event pattern, which has been detected as an
instance of a (partial) complex event that may require some response, i.e. pseu-
donym disclosure. Only the D-features of this token and/or the current event
are disclosed if they are required to execute an action of the current transition.

1 In the approach followed here, pseudonymity is established within the audit data,
only. As described in Sect. 8.4 and discussed in Chap. 9 more costly approaches can
be used to establish pseudonymity, such that principals can be referenced pseudony-
mously. This, however, is not the focus of the solutions presented in this book.

28.1 Extracting Disclosure Requirements from Serial Signature-nets 249

Other pseudonymized D-features of the same or other token(s)/event(s) remain
concealed.
However, a given disclosed D-Feature may also be evaluated in the context of
another serial signature-net, where it needs not be disclosed. Due to the syntac-
tical structure of the audit record from which the disclosed D-feature originates
(see Sect. 27.1), it is in principle linkable to its copies in tokens of other serial
signature-nets and may be considered disclosed w.r.t. all given signature-nets,
even though the disclosure may be technically inhibited for the copies in the
other tokens. Also, within a given serial signature-net, copies of pseudonyms of
already disclosed D-features may linger in token copies as a consequence of non-
consuming transitions. Such pseudonyms must be considered disclosed, even if
the disclosure transition never occurs for these tokens. These situations result
from the fact that a given D-feature in a given event may simultaneously be part
of several instances of (partial) complex events. If at least one instance of the
(partial) complex events requires a response, the D-feature is disclosed in the
context of this instance with the effect that it cannot be kept confidential w.r.t.
to the other instances.
With the assumptions made in Sect. 25.3.3 concerning escape transitions and
escape places, they can be safely ignored for the aspect of pseudonym disclosure,
as long as extra disclosure-specific state is discarded, when the corresponding
token is removed.
Section 28.1 investigates the extraction of requirements for pseudonym disclosure
from a set of given serial signature-nets. Appropriate cryptographic primitives for
technical enforcement of purpose binding of pseudonym disclosure are developed
in Sect. 28.2 using threshold schemes for cryptographic secret sharing. The pro-
posed approach is compared to the approach from Part II and the applicability of
extensions from Part II is examined. Leveraging the extracted knowledge about
disclosure requirements, as well as about the structure of the given set of serial
signature-nets, descriptions for the on-demand generation of threshold schemes
are derived in Sect. 28.3. The disclosure information provided by the pseudony-
mizer for pseudonym disclosure is described in Sect. 28.4. Section 28.5 presents,
how the pseudonymizer uses the knowledge about disclosure requirements and
scheme descriptions to provide disclosure information for the analysis engine of
the IDS. Finally, Sect. 28.6 describes how the analysis engine extracts disclo-
sure information from the pseudonymity-layer in order to disclose pseudonyms
subject to technical purpose binding.

28.1 Extracting Disclosure Requirements

Aside from the limitations arising inherently from the structure of audit data (see
above), controlled pseudonym disclosure shall be considered separately for each

250 28 Pseudonym Disclosure

instance of a given (partial) complex event. In the framework of serial signature-
nets this means that pseudonym disclosure needs only to consider each individual
token of a serial signature-net, while ignoring other tokens in the same serial
signature-net and in other serial signature-nets.
However, as described above, disclosure must be sensitive to the D-feature token
bindings of earlier transitions. To correctly disclose the D-features that are para-
meters of some actions and to keep other D-features securely pseudonymized, it
is necessary to leverage the knowledge about token bindings and actions, which
is specified in the given serial signature-nets. More specifically, it is necessary
to determine, which features are bound by what transition and to what token
variables, and by which disclosure transitions the corresponding pseudonyms are
used as action parameters. The disclosure transitions can be used as a starting
point, because they can be easily identified. A solution can be designed in a
similar way as described in Sect. 27.1, exploiting the semantics of token bind-
ings and the syntactical equality of variable names. There is no need to respect
limitations from the structure of audit data, because information generated for
pseudonym disclosure can be arbitrarily structured in the pseudonymity-layer.
Again, transitions are represented as vertices of an undirected graph H = (U,D),
where U and D are finite. Two vertices τ1 ∈ U and τ2 ∈ U need to be connected
by an edge (τ1, τ2) ∈ D where the pseudonyms generated during the occurrence
of τ1 should be able to be disclosed when τ2 occurs. The connected components
of H represent the token binding and the disclosure of the D-features. This
structure does not yet respect the fact that D-features need to be disclosed only
once, even if they are used in the actions of subsequent transitions. Also, the
approach for pseudonym disclosure proposed in Sect. 28.2 can take advantage
of the fact that some D-features are disclosed simultaneously. The algorithm
described below is designed to account for both of these facts.
Vertices τ ∈ U = X∪Y are defined as tuples (I, bvf,O,O) ∈ X or (I,W,O) ∈ Y ,
where I is the finite set of transition identifiers, W = {dv, df} describes the
semantics of the disclosure transitions (see below), and O = F ∪ V names the
feature type(s) and token variable(s) (see Sect. 27.1 for the definition of I, F and
V). We also assume here that useful serial signature-nets can be modeled without
assigning the pseudonymized value of one variable to another variable. With this
assumption, it is sufficient to consider the following transition semantics in order
to determine the requirements for pseudonym disclosure:

bvf : A token binding of transition i reads a feature type f directly from an audit
record and assigns the feature to the token variable v: τ = (i, bvf, v, f).

dv: An action of transition i uses the value of the token variable v as a parameter:
τ = (i, dv, v).

df : An action of transition i reads a feature type f directly from an audit record
and uses the feature as a parameter: τ = (i, df, f).

28.1 Extracting Disclosure Requirements from Serial Signature-nets 251

Note, that a given transition may be represented by one or more vertices, e.g. if
the action of a transition has several parameters or if a transition assigns values
to two or more variables.
There are three necessary conditions that need to be met, such that two vertices
τ1 and τ2 can be connected by an edge (τ1, τ2):

ND1) At least one of the vertices represents a transition that directly reads a
feature type from an audit record, e.g. τ = (·, bvf, ·, ·). If no feature type
is directly accessed in an audit record, also no pseudonym will be gener-
ated which could be disclosed, i.e. considering disclosure of pseudonyms is
obsolete.

ND2) At least one of the vertices represents a transition that discloses a feature,
i.e. τ = (·, d·, ·). If no feature is disclosed, it is obsolete to consider pseudonym
disclosure.

ND3) The vertices τ1 and τ2 represent (a) transition(s) that use(s) a common
operand, e.g. τ1 = (·, bvf, v, ·) and τ2 = (·, dv, v). If there is no common
operand, no direct dependence w.r.t. disclosure can be derived by considering
the two vertices alone.

If at least one of the necessary conditions is not satisfied, τ1 and τ2 will not be
directly connected by an edge. There are two sufficient conditions, such that two
vertices τ1 and τ2 are connected by an edge (τ1, τ2):

SD1) The vertices represent two transitions, where the one transition indirectly
reads a feature type with the help of the other transition, i.e. where the first
transition directly reads a feature type and binds the feature to a common
variable, before the second transition uses the variable value as an action
parameter.
Expressed more concisely, if there are three vertices τa = (ia, bvf, v, fa),
τb = (ib, bvf, v, fb) and τc = (ic, dv, v), then τc is connected to τj ∈ {τa, τb},
if the distance d(ij , ic) = ic − ij is minimal and d(ij , ic) > 0. The transition
represented by τc depends on the disclosure information for the pseudonym
that is chosen for the feature when the transition represented by τj occurred.
Note, that any vertex (·, dv, v) is connected to at most one vertex (·, bvf, v).

SD2) The vertices represent the same transition, where the one vertex di-
rectly reads a feature type and the other vertex uses the feature as a pa-
rameter for an action. Two combinations of vertices meet this condition:
τ1 = (i, bvf, v, ·), τ2 = (i, dv, v) and τ1 = (i, bvf, ·, f), τ2 = (i, df, f). Note,
that in both cases the pseudonym is directly disclosed by the IDS when
transition i occurs.

Concerning the above five conditions some remarks can be made. SD1 as well
as SD2 implicitly satisfy ND1, ND2 and ND3. When listing all combinations

252 28 Pseudonym Disclosure

of semantics of vertices that satisfy ND1, ND2 and ND3, the following pairs of
vertices are not connected, as defined by SD1 and SD2:

• Two disclosure vertices τ1 = (i, dv, v1) and τ2 = (i, dv, v2) are not connected,
because the variable values can be disclosed independently. However, both
variables are disclosed simultaneously during the occurrence of the same tran-
sition i. The solution for disclosure proposed in Sect. 28.2 can take advantage
of this fact.
Owing to this property of the solution, the two vertices τ1 and τ2 are con-
nected.

• Two disclosure vertices τ2 = (i2, dv, v) and τ4 = (i4, dv, v) with i2 < i4 are
not connected, because it cannot be decided by considering only τ2 and τ4,
whether the same value is assigned to v for both vertices. We assume that
there exists a vertex τ1 = (i1, bvf, v, ·) with i1 ≤ i2. If there exists also a
vertex τ3 = (i3, bvf, v, ·) with i2 < i3 ≤ i4, then the values assigned to v
must be disclosed independently for τ2 and τ4 and the vertices τ2 and τ4

must not be connected.
If there exists no such τ3, the edge (τ2, τ4) were redundant with the edges
(τ1, τ2) and (τ1, τ4). Hence, no such connection is inserted in H. Even more
importantly, in this case the pseudonym is disclosed at first by the transition
represented by τ2. After its disclosure, there is no need to disclose the D-
feature again for τ4, because the analysis engine can cache it. The algorithm
described below accounts for this fact and removes the edge (τ1, τ4). Note,
that inserting an edge (τ2, τ4) would sabotage the effect of removing (τ1, τ4).

• If the token binding of a variable is performed after the variable is used in
an action (d < 0), the use of the variable represents no indirect access of the
feature, which is bound later on. Hence, no disclosure requirements exist for
the common variable. Note, that for d = 0 both vertices represent the same
transition. That is, the token binding is performed directly before the action
is executed (see SD2).

Note, that all connected vertices in H either use a common variable name or
represent the same transition. Hence, all vertices of a given connected component
of H belong to the same serial signature-net.
Since H, as defined above, does not reflect the fact that the approach for pseu-
donym disclosure proposed in Sect. 28.2 can take advantage of already dis-
closed D-features, some further processing of H is required. The goal is that
vertices τ1 = (i1, bvf, v, ·), where exist τ2 = (i2, dv, v), τ3 = (i3, dv, v), etc. with
i1 ≤ i2 < i3, but no further τ0 = (i0, bvf, v, ·) with i2 < i0 ≤ i3 exists, are only
considered in the connected component containing τ2 (d(i1, i2) < d(i1, i3) <
etc.), i.e. the edges (τ1, τ3), etc. are removed from H. Then, the disclosure of v
is only performed for τ2 and the result is cached for τ3, etc.

28.2 Primitives for Technical Purpose Binding of Disclosure 253

This can be achieved by visiting all vertices τj = (i, d·, ·) in ascending order
for i, and by checking if there is a directly connected τk = (·, bvf, ·, ·) and then
removing all edges (τk, τl), l �= j. Finally, all unconnected (spurious) vertices
(·, dv, ·) and (·, bvf, ·, ·) are removed from H. As a result, the components of H
describe the D-features that need to be disclosed simultaneously when a certain
disclosure transition occurs. Note, that H may still contain unconnected vertices
(·, df, ·).
Consider the example serial signature-net n1 in Fig. 25.4 without a marking. The
token binding of t1 in Fig. 25.4 is represented by τ3 = (1, bvf, (n1, v), (e1, oid)) in
Fig. 28.1 and the action of t2 is represented by τ4 = (2, dv, (n1, v)). Note, that the
transition identifiers have been chosen in accordance with Fig. 27.1. Moreover,
the variable names have been extended with the signature identifier and the
feature types are combinations of event types and feature names. The vertices
τ3 and τ4 satisfy the sufficient condition SD1 and therefore are connected. Note,
that the vertices do not satisfy SD2. For all pseudonyms for feature types in
a connected component of the graph H the information for their simultaneous
disclosure must be provided when the transition occurs, where the feature is
pseudonymized, i.e. when transition t1 represented by τ3 occurs.

τ3 τ4

1, bvf, (n1, v), (e1, oid) 2, dv, (n1, v)

Fig. 28.1. A disclosure graph for the serial signature-net in Fig. 25.4

28.2 Primitives for Technical Purpose Binding of
Disclosure

We shortly recapitulate the definitions of the terms that are relevant for technical
purpose binding of pseudonym disclosure from the set-based approach in Part II
in order to point out the differences of the approach proposed here. Section 12.1
defines a disclosure scenario as activity that warrants pseudonym disclosure. A
disclosure scenario is modeled as a disclosure context, which is a set of weighted
observations of activity from the respective disclosure scenario. The activity level
of a disclosure context is the sum of the weights of the observations that are rele-
vant for the disclosure context. The activity level is determined for each distinct
feature in a disclosure context. Finally, the disclosure condition is defined as the
transgression of a threshold on the activity level of a feature in the disclosure
context. If the disclosure condition is met for a given feature in a given disclosure
context, then only the pseudonym of that feature can be disclosed. Note, that a
disclosure scenario does not necessarily match a misuse scenario, if the misuse

254 28 Pseudonym Disclosure

detection approach supports more elaborate models of misuse scenarios, such as
signature-nets.
The above model of disclosure scenarios is refined and redefined, such that a
disclosure scenario exactly matches a misuse scenario. Here, the disclosure con-
text is defined as a (partial) complex event that can be detected using a serial
signature-net, which evaluates observations of activity from the respective misuse
scenario (the definitions for observations in Sect. 12.1.1 still apply). The activity
level of a disclosure context is the number of non-escape transitions that have
occurred in the serial signature-net due to the token that represents the (partial)
complex event, i.e. the number of steps of the (partial) complex event that have
been bound to observed events. The disclosure condition is defined as the oc-
currence of a disclosure transition due to the token that represents the (partial)
complex event. A serial signature-net may contain one or more disclosure transi-
tions. With respect to pseudonym disclosure each distinct path from the initial
place to a disclosure transition is considered as a separate disclosure context
that is associated with the token. Hence, a token is associated with one ore more
disclosure contexts, if there are one or more disclosure transitions in the serial
signature-net. Each disclosure condition can be regarded as the transgression of
a threshold on the activity level of a token in an associated disclosure context.
If a given token activates a disclosure transition, and if the transition occurs,
all pseudonyms of D-features that are parameters of the action of this transition
shall be disclosed simultaneously. That is, only those pseudonyms shall be dis-
closed that are associated with the disclosure context that corresponds to the
disclosure transition. Pseudonyms of D-features that are associated with other
disclosure contexts of that token shall not be disclosed. Moreover, pseudonyms
in other tokens also shall not be disclosed.

28.2.1 Simulating Set-based Disclosure Context with Serial
Signature-nets

Any disclosure context defined according to the set-based approach from Part II
(all weights equal 1, repetition of events is significant, events cannot be recon-
ciled) with N distinct feature types fi, i = 1, . . . , N and a threshold t can be
expressed as N t disclosure contexts based on distinct serial signature-nets with
t transitions each. Note, that all fi refer to the same concept, e.g. user name, IP
address. If repetition of events is considered insignificant, there are only N !

(N−t)!

distinct serial signature-nets. Each transition of these serial signature-nets is la-
beled with an ei, where ei is the event type implied by fi = 〈ei, di〉 (di: feature
designator). The first transition t1 binds an fi1 to a variable v, which is used
as a parameter of the action of the last transition tt. The intra-event condition
of all tj , j = 1, . . . , t is true.2 The inter-event condition of each tj , j = 2, . . . , t

2 Note, that the implementation in Part III allows for expressing intra-event conditions
as part of the regular expression matching the event type. For the simulation we
assume that the intra-event condition is also expressed as part of the event type.

28.2 Primitives for Technical Purpose Binding of Disclosure 255

restricts transition activation such that the feature for fij
equals the value of

v. If the disclosure condition of the set-based disclosure context is met, also the
disclosure condition of one of the serial signature-nets is met. Thereafter, the
feature assigned to v is considered disclosed. The set-based disclosure context is
represented by the set of disclosure contexts of the serial signature-nets.
Given a set of serial signature-nets that simulates a set-based disclosure context,
it is obvious that serial signature-nets allow for more fine-grained disclosure
context than the set-based model. Intuitively, we can refine the granularity by
removing arbitrary serial signature-nets from the simulation set. Yet, the basic
idea for technical purpose binding of pseudonym disclosure described in Sect. 13.3
can be applied (see below).

28.2.2 Requirements for Threshold Schemes

For the approach in Part II the set-based definition of disclosure context allowed
to apply pseudonym disclosure to subsets of the original audit data. This is a
useful property, for example if it is not desired to make the whole audit data
available or if it is too expensive to process the whole audit data. In these cases
audit records are filtered out, and pseudonym disclosure can be applied to the
remaining audit data. For this to work, it is necessary that for a given feature
a virtually unlimited number of shares can be generated using the threshold
scheme for secret sharing associated with the feature in a given disclosure context.
Shamir’s threshold scheme has been selected in Sect. 13.3 because it has this
property in addition to other desirable properties [200].
However, the requirements are slightly different for the serial signature-net-based
definition of disclosure contexts. Due to the semantic expressiveness of such dis-
closure contexts, pseudonym disclosure is not as robust against filtering of arbi-
trary audit records. Aside from this, a set-based definition of disclosure contexts
allows for virtually unlimited observations for a given feature in a given disclosure
context, while a definition based on serial signature-nets restricts the relevant
observations to a known fixed number per token. However, the number of tokens
is virtually unlimited. Hence, the number of threshold schemes associated with
tokens is virtually unlimited. As a result, for the approach proposed here, it is
not necessary that the threshold scheme allows to generate a virtually unlimited
number of shares for a given secret.

28.2.3 Naïve Application of Threshold Schemes

Since there is no need to generate a virtually unlimited number of shares per
threshold scheme, further options are available to choose candidate threshold
schemes [159]. Aside from generating an arbitrary number of shares, the threshold

256 28 Pseudonym Disclosure

scheme proposed by Karnin, Greene and Hellman (KGH) offers the same advan-
tageous properties as Shamir’s threshold scheme (ideal, perfect, cf. Sect. 13.3)3
and can be implemented even more efficiently [126] (see Sect. A.2). The KGH
threshold scheme can be implemented using a pseudo-random number generator
and operators for addition and subtraction of big numbers. Managing, evaluat-
ing, manipulating and interpolating polynomials is not necessary in the KGH
threshold scheme. As a result, in the KGH threshold scheme all important op-
erations can be carried out very efficiently (share generation, share invalidation,
secret recovery).
We briefly summarize how Shamir’s threshold scheme is used in Part II to pro-
vide information for pseudonym disclosure, and then we describe how the KGH
threshold scheme is used here. Note, that instead of the KGH threshold scheme
here also the less efficient Shamir threshold scheme could be used. The way
threshold schemes are used in the following, both schemes – KGH and Shamir –
provide protection of secrets in an equally secure way.
In Part II for a given observed feature type f the disclosure contexts Ig are
determined where f is relevant, as well as the weights wf,g of the observation
of f in each of the disclosure contexts. For each of the determined disclosure
contexts exists a separate threshold scheme for the observed feature, which is
used to generate the next wf,g shares. There is virtually no limit to the number
of shares generated from a given threshold scheme, if the feature is repeatedly
observed.
Here, threshold schemes are tied to tokens in the marking of serial signature-nets.
Assuming that all transitions in a serial signature-net are consuming transitions,
a given token starts out at the initial place and each time a non-escape transi-
tion occurs the activity level w.r.t. to that token increases by 1, until a disclosure
transition occurs, i.e. the disclosure condition is met. A straightforward approach
is implementing each disclosure context as a KGH threshold scheme that is as-
sociated with a token. The secret protected by the scheme is the decryption key
that is needed to decrypt the D-features for pseudonym disclosure. Each time a
transition in the serial signature-net occurs for the token a share is generated
and provided in the pseudonymity-layer. The scheme is chosen such that the
threshold corresponds to the occurrence of the disclosure transition in the dis-
closure context. If D-features are directly accessed by the disclosure transition,
the threshold would have to be chosen to be 1, which is pointless. In this case
the affected original D-features are provided in the pseudonymity-layer instead
of a share.
With this construction each disclosure context associated with a token is pro-
cessed individually, i.e. the disclosure in one disclosure context does not affect
other disclosure contexts. If a disclosure condition is satisfied, all D-features that
are parameters to the action of the disclosure context can be disclosed simul-
3 The KGH threshold scheme also supports the notion of weights. However, this prop-

erty is not used by the definition of disclosure contexts based on serial signature-nets.

28.2 Primitives for Technical Purpose Binding of Disclosure 257

taneously using the recovered decryption key. If a token is removed due to the
occurrence of an escape transition the associated threshold schemes are also re-
moved. Since the threshold of the removed schemes will never be exceeded, the
D-features will not be disclosed by means of these schemes.

28.2.4 Elaborate Application of Threshold Schemes

The assumption that all transitions of a serial signature-net are consuming tran-
sitions is a strong restriction. This restriction is removed in the following by
appropriately extending the use of threshold schemes.
If a transition t occurs that is connected with a non-consuming edge to the
input place, the input token o is not removed and can later still serve as input
for the transition. Each time t occurs, a copy of o is generated in the output
place. Because these copies might be extended by the token bindings of t or
later transitions, we denote them as child tokens, while o is denoted as their
parent token. Child tokens that originate from the same parent token are denoted
as sibling tokens. The child tokens are associated with copies of the threshold
schemes that are associated with the parent token o. Consequently, if one of the
child tokens of o activates a disclosure transition, all D-features associated with
the threshold scheme for this transition are disclosed. This is not a problem as
long as the child tokens have not bound newer D-features than the parent token.
In that case the D-feature pseudonyms that are disclosed for a child token are
linkable with the pseudonyms in the parent and sibling tokens. Hence, if the
disclosure of one child token allows the disclosure of the same pseudonyms in the
parent and sibling tokens no information is divulged that exceeds the information
already provided via pseudonym linkability.
But, if the child tokens contain D-features that the parent token does not contain,
these newer D-features can be disclosed simultaneously in all sibling tokens, even
if only one child token activates a disclosure transition. This is clearly undesir-
able; the newer D-features in the other sibling tokens should remain confidential.
A straightforward solution to this problem is to modify the disclosure context
that is associated with a child token, if the parent token is accessed via a non-
consuming edge. In this solution each child token will be assigned an individual
disclosure context, such that the disclosure contexts of all sibling tokens are
different. This solution is optimal, if we ignore the information that pseudonym
linkability provides (see above).
If we take the information provided by pseudonym linkability into account, the
solution proposed above creates different disclosure contexts regardless of the fact
that some of the pseudonyms for sibling tokens are linkable. Even if the disclosure
of the pseudonyms for one token does not allow to disclose the pseudonyms of the
sibling tokens, pseudonym linkability allows to infer, which of the disclosed D-
features are also present in the sibling tokens. Considering these circumstances,

258 28 Pseudonym Disclosure

a more efficient solution must take into account the location of non-consuming
input edges as well as of subsequent token bindings of D-features.
The revised solution is based on the idea that disclosure contexts for tokens in
a serial signature-net are partitioned where on the right hand side of a non-
consuming edge the nearest D-feature bindings are located. Note, that the par-
titioning may be different for each disclosure context, because the relevant D-
feature bindings may be located differently. Each partition is represented by an
individual threshold scheme. For each partition a virtually unlimited number of
such schemes can be generated on demand to be associated with copies of child
tokens that exist due to the non-consuming edge. The schemes for neighboring
partitions are inter-connected in a tree structure, where each path from the root
of the tree to the leaves represents a distinct disclosure context for an individual
token. New child nodes in the tree are generated each time a child token binds
a D-feature for the first time. The new child node is a sibling of the threshold
schemes of its sibling tokens. Some example trees are shown in Fig. 28.3.
The way the schemes are inter-connected warrants that for each distinct disclo-
sure context the D-features, which were accessed on that path, can be disclosed,
but no D-features that were not accessed on that path. The secrets for schemes
in the first partition are chosen pseudo-randomly (s1 := r()), such that all tokens
start with a distinct scheme. This design decision reflects the fact that the first
edge of all (serial) signature-nets is a non-consuming edge. Due to this initial-
ization, the first edge does not need to be considered as a non-consuming edge
in the following.
The schemes for the last partition are chosen such that the last share corresponds
to the occurrence of the disclosure transition that is associated with the given
disclosure context. If there are no non-consuming edges on the left-hand side
of some D-feature bindings, then the first and the last partition are the same,
i.e. the construction works as described in Sect. 28.2.3. The inter-connection of
parent and child schemes is shown in Fig. 28.2.
If there is a D-feature binding on the right-hand side of a non-consuming edge,
the current partition reaches up to the predecessor transition and the next parti-
tion starts with the transition that binds the D-feature(s). The current partition
i and the next partition i + 1 are represented by threshold schemes that are
inter-connected as follows. The threshold ti of the current scheme is increased
by 1, such that there is an additional share si

ti .4 The share si
ti is not associ-

ated with any transition and is never provided in the pseudonymity-layer during
pseudonymization. Instead, si

ti serves as the secret si+1 of the child schemes. As
a result, the secret si of the current scheme can only be recovered if the shares
si
1, . . . , s

i
ti−1 are extracted from the pseudonymity-layer and the share si

ti = si+1

has been recovered from one of the child schemes. Thus, all child schemes can
benefit from the same parent scheme, while all sibling schemes can be chosen
4 Note, that superscript here denotes the partition index (not the exponentiation op-

eration).

28.2 Primitives for Technical Purpose Binding of Disclosure 259

differently. Section 28.3 describes the details of disclosure context partitioning
and appropriate threshold scheme generation.
The disclosure information E(ki, F) is provided when a given D-feature F is
pseudonymized in the ith partition. The encryption key is chosen such that ki =
s1 ⊕ si

ti . Note, that even though all sibling schemes in partition i use the same
secret si = si−1

ti−1 , the sibling schemes are chosen differently, such that si
ti differs

with high probability for all sibling schemes. The component s1 ensures that the
whole path of threshold schemes from a given leaf node to the root node of the
tree must be available to be able to recover ki, and the component si

ti warrants
that there is with high probability an individual ki for each token in partition i.

28.2.5 Extensions

For the set-based approach in Part II several extensions have been developed
in Chap. 16. In the following, each extension is briefly examined to determine
whether it can still be applied or is already subsumed by the more elaborate
approach.
The extension in Sect. 16.1 additionally protects the secrets of threshold schemes
by encrypting them. Only the reidentifier knows the corresponding decryption
keys, such that only he can use the recovered secrets. External observers can
recover the encrypted secrets, but cannot decrypt and use the secrets. This ex-
tension can also be used here to encrypt the decryption key ki. Alternatively, the
pseudonymity-layer data could be transmitted over an encrypted channel from
the pseudonymizer to the IDS.
Section 16.2 introduces dummy data in the pseudonym mapping to make it
harder to determine the number of actors in an observed system. The extension in
Sect. 16.2 is only effective, if the shares are unlinkable. It must be considered that
there is a linkage between shares in the pseudonymity-layer and pseudonyms in
the application-layer. For the implementation in Part III the pseudonymity-layer
data is linkable within disclosure contexts, and the application-layer pseudonyms
may be specified to be linkable. Also, for the more elaborate approach there is a
linkage between the shares in the pseudonymity-layer data and the application
layer pseudonyms. Hence, the precondition for the extension to work does also
not hold for the refined approach.
The extension in Sect. 16.3 has been used for mismatch avoidance in the imple-
mentation of the set-based approach. The extension proposes to use the cryp-
tograms of features as labels for shares from the same threshold scheme. This
however does not work for the approach based on serial signature-nets, because
disclosure contexts are not associated with the feature types, but with distinct
tokens. An appropriate solution is described in Sect. 28.4.
To overcome the limitations of a set-based definition of disclosure contexts it
has been proposed in Sect. 16.4 to make disclosure contexts (in-)sensitive to

260 28 Pseudonym Disclosure

the repetition of certain events. This extension has also been implemented. The
expressiveness of serial signature-nets subsumes this extension.
Another important extension concerns the expressiveness of set-based disclosure
contexts and has also been implemented. The extension in Sect. 16.5 is based
on the observation that the activity level of a disclosure context may degrade
over time or when certain events occur. This notion of forgetting and garbage
collection is modeled in serial signature-nets with the help of escape places and
time stamp features for time-outs. Hence, if a token is removed, the associated
threshold schemes are discarded, such that their secrets cannot be recovered.
Hence, there is no need for share invalidation (cf. Sect. 16.5.1) in the serial
signature-net-based approach.
Finally, the extension in Sect. 16.6 integrates organizational purpose binding
for pseudonym disclosure with the set-based approach. The same solutions can
be used here (see Sect. 16.6.1 and Sect. 16.6.2). The notion of escrow data is
integrated in Sect. 28.4.2.
Wrapping up the results, the extensions to overcome limitations of the set-based
model are obsolete in the approach based on serial signature-nets, the trick used
to label shares is not applicable and the extensions that strengthen the system
against external observers and that allow for organizational purpose binding
of pseudonym disclosure are easily integrated. An extension for coarsening the
number of actors is not directly applicable.

28.3 Extracting Threshold Scheme Descriptions

For each disclosure context the partitioning can be extracted efficiently from a
given serial signature-net. First, the connected components of the disclosure re-
quirements graph H (see Sect. 28.1) are determined [168]. The connected compo-
nents containing one or more (·, dv, ·)-vertices represent the disclosure contexts
for which partitions need to be determined. Each of these connected compo-
nents is associated with a control block that is used to collect information about
the structure of the serial signature-net. The control block comprises a partition
counter that identifies the partition that is currently examined (initial value:
1), a transition counter that contains the number of transitions that have been
examined in the current partition (initial value: 0), a boolean flag that signifies
whether one of the transitions counted for the current partition is connected to
a non-consuming edge (initial value: false), and the transition identifier where
the currently examined partition starts. Finally, the control block contains a
boolean flag signaling whether the disclosure context has been completely par-
titioned, such that no further inspection is necessary for this disclosure context
(initial value: false).
After the initialization of the control blocks for the disclosure contexts the given
serial signature-net is examined (in linear time), starting from the first transition

28.3 Extracting Threshold Scheme Descriptions 261

up to the last transition. Before a transition is examined, it is checked if all
disclosure contexts are already completely partitioned. If that is the case, the
algorithm terminates.
When examining the current transition, firstly the transition counters in the
control blocks for all not yet completely partitioned disclosure contexts are in-
cremented to account for the current transition. Then, it is determined whether
the current transition is connected to a non-consuming input edge and if so, the
corresponding flag is set to the value true in all control blocks of all incomplete
disclosure context partitionings. As described in Sect. 28.2.4 the non-consuming
edge that is connected to the initial place is ignored, i.e. considered to be a con-
suming input edge, because it is specially considered when creating the scheme
description for the first partition (see below).
If the current transition executes an action that uses variable parameters, any
corresponding vertex in H is determined. For the control block that is associated
with the connected component that contains this vertex a scheme description for
the current partition is created (see below). Since the current transition repre-
sents the disclosure of the disclosure context, its partitioning is complete. The
corresponding flag is set to the value true in the control block.
If a non-consuming edge has been seen, it is determined if the current transition
(also) performs (a) token binding(s) on D-features. First, in H the (·, bvf, ·, ·)-
vertices representing the D-feature token binding(s) are located. Then, for each
connected component that contains such a vertex the associated control block
is determined. For each such control block of an incomplete disclosure context
partitioning a scheme description is created (see below). Since the current tran-
sition starts a new partition, the partition counter is incremented, the transition
counter is set to the value 1 accounting for the current transition in the new par-
tition. The identifier of the current transition is stored in the control block as the
starting point of the new partition, and the edge flag is reset to the value false.
Note, that the current transition is considered in the scheme description of the
former partition as the connecting share/secret inter-connecting both partitions
(cf. Sect. 28.2.4).
Note, that for transitions that perform D-feature token bindings and that also
execute actions with variable parameters both of the above cases apply. After
the examination of the current transition, the next transition is examined.
A scheme description for a partition describes the structure of threshold schemes
that are created on demand for a given partition of a given disclosure context.
If for a given disclosure context and a given partition no scheme description has
already been created, a scheme description is initialized and filled out using the
data from the corresponding control block. The scheme description comprises
the following information:

• The number of the partition i of the disclosure context for which the descrip-
tion is valid. This number is taken from the current value of the partition
counter.

262 28 Pseudonym Disclosure

• The threshold ti of the threshold schemes. This number is taken from the
current value of the transition counter.
If the current partition is the last partition of the disclosure context, the tran-
sition counter describes the number of shares that represent the transitions
in this partition.
If the current partition is not the last partition of the disclosure context, the
transition counter includes the number of shares that represent the transitions
in the current partition plus an additional share that connects this scheme
to its child schemes. Note, that the first partition of a disclosure context may
also be its last partition.

• A function that determines how the secret for the threshold scheme must be
chosen.
If the current partition is the first partition of the disclosure context, the
secret is chosen pseudo-randomly: s1 := r(). This accounts for the fact that
the edge connected to the initial place of each serial signature-net is a non-
consuming transition [149]. Hence, it is ensured that each token is associated
with an individual set of distinct threshold schemes.
If the current partition is not the first partition of the disclosure context, the
secret is chosen to be the last share of the parent scheme that was generated
for the previous partition: si := si−1

ti−1 .
• A function that determines how the shares must be chosen that represent

the transitions of the current partition. All but the last share are chosen
pseudo-randomly: si

j := r(), j = 1, . . . , ti − 1. Due to the nature of the KGH
threshold scheme, the last share is chosen to be si

ti := si −
∑ti−1

j=1 si
j .

If the current partition is the last partition of the disclosure context, all ti

shares represent the transitions in the disclosure context.
If the current partition is not the last partition of the disclosure context, the
last share is never provided in the pseudonymity-layer, but is used as the
secret si+1 of the child schemes. This share connects the generated scheme
to its child schemes in a tree structure.
Note, that this step can be adapted to fit Shamir’s threshold scheme. The
shares are chosen as usually, creating a pseudo-random polynomial that is
evaluated at arbitrary, but distinct points.

For the example serial signature-net n2 in Fig. 28.2 the disclosure requirements
graph H is depicted with its connected components for the disclosure transitions
t4 and t6. The escape transitions and escape places of n2 are not shown in
Fig. 28.2. Each connected component represents a disclosure context. For the
disclosure contexts for t4 and t6 the partitions are shown as well as the scheme
description for each partition. It can be seen that the partitionings for the both
disclosure contexts are different, due to the different locations of the relevant

28.3 Extracting Threshold Scheme Descriptions 263

D-feature bindings (t2, t3). Note, that the binding of f2 is associated only with
the disclosure context of the nearest disclosure transition (t4). Moreover, non-
D-feature token bindings are completely ignored (v1 := f1, v4 := f4, v5 := f5).
Therefore, the non-consuming input edge of t5 does not have any effect on the
partitioning.
A scheme and its shares are generated on demand using the appropriate scheme
description. The light-grey boxes in Fig. 28.2 comprise the elements of a scheme
description for a partition. The parameters on grey background are used to deter-
mine the location of a scheme in the serial signature-net (see start in Fig. 28.2), to
determine its threshold (see threshold in Fig. 28.2) and to generate its secret (see
si in Fig. 28.2). These parameters are never inserted in the pseudonymity-layer.
In contrast, the white fields show the shares that are generated in correspondence
to the transition occurrences. These shares are inserted in the pseudonymity-layer
when the corresponding transitions occur. The secret of child schemes is chosen
to be the last share of the parent scheme, such that all child schemes are inter-
connected with their parent schemes (see the dashed lines in Fig. 28.2). This
share is also not provided in the pseudonymity-layer.
The black frames in Fig. 28.2 show the components for encryption key generation
for disclosure information about D-feature token bindings. From each scheme the
last share is used in conjunction with the secret of the first scheme. The last share
ensures that the key for all schemes is different with high probability, while the
secret of the first scheme ensures that all transitions on the path from the initial
place to the disclosure transition have occurred for the token. Note, that due to
the way the schemes are inter-connected, the secret of the first scheme can only
be recovered if all shares for the transitions on the path are available.
The scheme descriptions for the partitions of the disclosure contexts of the serial
signature-net n2 from Fig. 28.2 are instantiated by the pseudonymizer, if there
is a marking for n2. Figure 28.3 depicts an example marking for n2 (the tran-
sition labels, escape transitions and escape places are not shown). The marking
comprises 8 tokens, where the tokens 2 and 3 are child tokens w.r.t. token 1 due
to the non-consuming input edge of t1. Furthermore, due to the non-consuming
input edge of t2 the tokens 4 and 5 are child tokens w.r.t. token 2, and the tokens
6 and 7 are child tokens w.r.t. token 3. Finally, due to the non-consuming input
edge of t5, token 8 is a child token w.r.t. token 7.
Each token – except for token 1 from the initial marking – is associated with its
own threshold scheme (see the token symbols next to the threshold schemes in
Fig. 28.3). For the instantiated schemes the meaning of the white fields is slightly
different in Fig. 28.3. Here, they show the shares that have already been used,
because the corresponding transition has already occurred for the token that is
associated with the scheme. In the example the threshold schemes are calculated
modulo P = 100.
For the marking in Fig. 28.3 several noteworthy remarks can be made. First,
there is no one-to-one relationship between the schemes associated to parent

264 28 Pseudonym Disclosure

shares inserted in pseudonymity−layer when transitions occur
for partition i for partition i+1 data not inserted in pseudonymity−layerscheme description scheme description

connecting share/secret

schema−specific components of D−feature encryption key

t1 t2 t3 t4 t5 t6

.
v1 := f1

.
v2 := f2

.
v3 := f3

.
v5 := f5

alert(v2, v3)

.

alert(v2)

.
v4 := f4

start: 1
threshold: 2
s1 := r()

s1
1 := r()

s1
2 := s1 − s1

1

start: 2
threshold: 3

s2
1 := r()

s2 := s1
2

s2
2 := r() s2

3 :=

s2 − (s2
1 + s2

2)

partition 1 partition 2

start: 3
threshold: 4

s2
1 := r()

s2 := s1
3

s2
2 := r() s2

3 := r()

s2 −
∑3

j=1 s2
j

s2
4 :=

start: 1
threshold: 3
s1 := r()

s1
1 := r()

s1
3 := s1 − (s1

1 + s1
2)

s1
2 := r()

partitioning and scheme descriptions of the disclosure context of t6:

partition 1 partition 2

3, bvf, (n2, v3), (·, f3)

4, dv, (n2, v2)

6, dv, (n2, v2)

6, dv, (n2, v3)

2, bvf, (n2, v2), (·, f2)

+++

partitioning and scheme descriptions of the disclosure context of t4:

n2 :

connected component for the disclosure context of t6

connected component for the disclosure context of t4

τ1

τ2

τ3

τ4

τ5

H :

Fig. 28.2. Example disclosure contexts with partitioning and scheme descriptions

28.3 Extracting Threshold Scheme Descriptions 265

7

8

1 32 4 5 6 7 8

6

7

8

4

5

components of D−feature encryption key

parent scheme child scheme

not yet used shares

associated tokens

used shares

connecting share/secret

2

3

2

3

4

5

6

t1 t2 t3 t4 t5 t6

s1 = 39

s1
1 = 17

s1
2 = 22

s1 = 82

s1
1 = 45

s1
2 = 37

s2
1 = 29

s2 = 37

s2
2 = 5 s2

3 = 3

s2
1 = 51 s2

2 = 94 s2
3 = 92

s2 = 37

s2
1 = 51 s2

2 = 94 s2
3 = 92

s2 = 37

s1 = 26

s1
3 = 6

s1
1 = 86 s1

2 = 34

s1 = 71

s1
1 = 57

s1
3 = 2

s1
2 = 12

s1 = 26

s1
1 = 86

s1
3 = 6

s1
2 = 34

s2
4 = 32s2

1 = 38

s2 = 2

s2
2 = 64 s2

3 = 68

s2
4 = 7s2

1 = 76

s2 = 2

s2
2 = 11 s2

3 = 8

s2
4 = 7s2

1 = 76

s2 = 2

s2
2 = 11 s2

3 = 8

s2
4 = 19s2

1 = 23

s2 = 6

s2
2 = 50 s2

3 = 14

s2
1 = 74

s2 = 22

s2
2 = 35 s2

3 = 13

s2 = 22

s2
1 = 9 s2

2 = 66 s2
3 = 47

partition 1 partition 2

partition 2

partitioning of the disclosure context of t6 and threshold schemes for the tokens:

partitioning of the disclosure context of t4 and threshold schemes for the tokens:

partition 1

+++
n2 :

Fig. 28.3. Example disclosure contexts with instantiated threshold schemes

266 28 Pseudonym Disclosure

tokens and to their child tokens. For example, the child token 4 uses a copy
of the scheme for its parent token 2 in the disclosure context of t6. The same
applies for the child token 8 of the parent token 7 in both disclosure contexts.
The reason is that disclosure contexts are sensitive only to child tokens that may
have different D-feature bindings, as justified in Sect. 28.2.4. Thus, child schemes
are only generated from scratch where the first D-feature binding occurs in a
disclosure context after a child token has been created, e.g. at t3 for the disclosure
context of t6. The result is an increased efficiency, because fewer schemes need
to be created from scratch and more schemes can simply be copied from the
parent token. Second, as token 4 also token 5 used its own copy of the scheme
of token 2 in the disclosure context of t6 before t3 has occurred. This scheme
looked exactly like the scheme associated with token 4 (not shown in Fig. 28.3).
Analogously, in the disclosure context of t6 tokens 6 and 7 were each associated
with a copy of the scheme associated with token 3 before t3 occurred, and the s1

2

of these schemes were used when t2 has occurred for tokens 6 and 7 (not shown
in Fig. 28.3). Third, since already all shares for the schemes for the disclosure
context of t4 have been used for the tokens 7 and 8, in order to save space in
practice the schemes do not need to be associated with these tokens any more.
The same applies to token 8 in the disclosure context of t6. Token 8 will be
removed immediately after t6 has occurred.

28.4 Pseudonymity-layer Data

While the IDS analysis engine needs to be slightly extended to be able to ana-
lyze pseudonymous audit data and to disclose pseudonyms before actions are
executed, the rationale from Sect. 13.1 for introducing pseudonymity-layer data
still applies. It is good practice of software engineering to keep the data for dif-
ferent concepts structurally separated. The analysis engine then still processes
the audit data in the application-layer and the extensions for pseudonymity-
awareness fetch the disclosure information from the pseudonymity-layer.
While the concepts for the pseudonymity-layer data remain the same and the
disclosure information basically is the same as in Sect. 19.2, the pseudonymity-
layer data is not tied to the events in the application-layer audit data as described
in Sect. 19.2.1. Instead, in Sect. 28.2 the definitions of disclosure context, activity
level and disclosure condition tie pseudonym disclosure to individual tokens in
the marking of the serial signature-nets. Hence, disclosure information must be
tied to individual tokens in a way that can be computed by the pseudonymizer
as well as by the analysis engine.
We firstly review the characterizing features of an individual token in the marking
of a serial signature-net. In the second step we design a compact representation of
these features, such that information about the tokens is concealed and such that
it can be computed efficiently. A given token in the marking of a serial signature-
net n is characterized by the place where it resides in n and by the values

28.4 Pseudonymity-layer Data 267

that are assigned to its variables. In serial signature-nets a given place where a
token resides is equivalent with the sequence of transitions that have occurred,
such that the token has been generated in that place. Albeit the history of
token bindings for the token provides slightly more information than the current
variable-value assignment, it can serve the same objective. Hence, a token can be
characterized by the following features: the sequence of transitions that occurred
for the token (or its parent tokens such that the token was generated) and the
sequence of variable-value assignments due to token bindings. Note, that the
sequence of transitions uses transition identifiers, which are a global name space
w.r.t. all serial signature-nets.
While this information could be used as a token identifier, it certainly is sub-
optimal in space and therefore cost for locating the identifier, as well as w.r.t.
the confidentiality of the state of the serial signature-nets. Note, that the latter
property here is considered undesirable, but it may as well be leveraged such
that the IDS analysis engine can take advantage of the analysis state computed
by the pseudonymizer, saving computation time on the side of the IDS. A more
compact and concealing representation can be achieved by using a cryptographic
collision-resistant hash-function h() to digest the features of a token identifier
into a single value. The size of the resulting value must be chosen appropriately,
considering a reasonable upper bound for the number of tokens that are expected
during day-to-day operation.5

Cryptographic hash-functions can be applied repeatedly to their own output bi−1

while using additional input data ci, such that bi = h(bi−1|ci), b0 = ε. The result
is that c1, . . . , ci are represented by bi. As long as no collision occurs, this value
can only be regenerated by using the same input in each round [154].
This property can be leveraged by the pseudonymizer to initialize the identifier
o for the tokens with a known fixed value, e.g. o := NULL. When a token is the
input to an occurring transition, the hash-function can be applied to the token
identifier oin of the input token together with the transition identifier l as well as
the variable-value assignments v1 : p1, . . . , vk : pk, such that oout := h(oin|l|v1 :
p1| . . . |vk : pk).
The values pi must be available to the pseudonymizer and the analysis engine. For
pseudonymized features the pi are the corresponding pseudonyms. Consequently,
if the pseudonymizer and the analysis engine use the same serial signature-nets
and use the same pseudonymized audit data for token identifier generation, then
the analysis engine can associate a token identifier (as provided by the pseudony-
mizer) with the corresponding token in the markings of its serial signature-nets.

5 The occurrence of collisions of h() could be exploited to incapacitate pseudonym
disclosure. Hence, this issue warrants closer examination.

268 28 Pseudonym Disclosure

28.4.1 Organizational Purpose Binding of Pseudonym Disclosure

Some remarks need to be made with respect to organizational purpose binding
of pseudonym disclosure. As motivated in Sect. 16.6, organizational purpose
binding can be useful if

1. a feature would be disclosed immediately, or if
2. some misuse scenario might occur, which has not been modeled.

For the first case, D-features that would be disclosed immediately can be deter-
mined automatically using the graph H: A feature type is directly accessed and
disclosed by the same transition. Instead of providing the disclosure information
for such D-features in the clear, it can be protected by organizational purpose
binding. However, the PPO needs to specify a priori that this shall happen.
In the second case, it is by definition impossible to extract the information, which
features could warrant disclosure subject to organizational purpose binding, be-
cause the serial signature-net is missing, from which the information would be
extracted. Thus, in this case the PPO (together with the SSO) manually specifies
a priori, which of the pseudonymized features might warrant disclosure subject
to organizational purpose binding.
Note, that the control requirements for pseudonym disclosure subject to organi-
zational purpose binding must comply with Fig. 8.6a, irrespective of the control
requirements for pseudonym disclosure subject to technical purpose binding de-
picted in Fig. 26.1.

28.4.2 Disclosure Information

Disclosure information is tied to a given token by labeling it with the token
identifier. The disclosure information comprises the following elements:

〈v, p, E(ki, F)〉: For D-feature token bindings where the variable is used in a
later disclosure transition, e.g. τ1 = (i, bvf, v, f) connected to τ2 = (j, dv, v)
and i < j (see condition SD1 in Sect. 28.1). The name of the token variable
v and the encrypted D-feature F are provided. The encryption/decryption
key ki is chosen as described in Sect. 28.2.4.
In addition to the token variable name, also the pseudonym p of F is pro-
vided. Using p, the cryptograms and shares can be easily associated with the
application-layer audit data, such that pseudonym disclosure could be per-
formed independently from audit data analysis, e.g. using a separate tool that
does not analyze the audit data, but merely discloses as many pseudonyms
as possible. Note, that this may have practical merit in certain environments,
while in other environments it may be undesirable.

28.4 Pseudonymity-layer Data 269

〈v, p, F 〉: For D-features that are directly read from the audit data and assigned
to a variable that is disclosed by the same transition, such that the analysis
engine would disclose the pseudonym immediately, e.g. τ1 = (i, bvf, v, f)
connected to τ2 = (i, dv, v) or τ2 = (i, df, f) (see condition SD2 in Sect. 28.1).
The name of the token variable and the D-feature clear-text F are provided.
Concerning the provision of p the remark from above applies. If F shall not
be provided in the clear, it can be replaced by the escrow data as defined
below.

〈p, F 〉: For D-features that are directly read from the audit data and are disclosed
by the same transition without being assigned to a variable, e.g. τ2 = (i, df, f)
not connected to any τ1 = (i, bvf, v, f) in H.
Note, that p cannot be omitted here. If F should not be provided in the
clear, it can be replaced by the escrow data as defined below.

〈p,E(k̃o, F)〉: Organizational purpose binding for pseudonym disclosure can be
easily added to the disclosure information. The respective feature F is en-
crypted using an escrow key k̃o. For the details on the cryptographic enforce-
ment of organizational purpose binding refer to Sect. 16.6.1 and Sect. 16.6.2.
Note, that F takes the place of si here.6

Pseudonym disclosure can be subject to organizational purpose binding, in-
dependently of the fact that it is already subject to technical purpose binding.
In case (2) (see above) a pseudonym p can be specified to be disclosed even in
the absence of actions. Then, 〈p,E(k̃o, F)〉 is provided in the pseudonymity-
layer. Note, that p cannot be omitted here.
Disclosure w.r.t. organizational purpose binding can also be used in addition
to technical purpose binding, such that 〈v, p, E(ki, F), E(k̃o, F)〉 is provided.
Also, instead of immediately disclosing certain D-features, disclosure can
be subject to organizational purpose binding if we use 〈v, p, E(k̃o, F)〉 or
〈p,E(k̃o, F)〉 (see case (1) above).

〈m, si
j〉: If a transition occurs, for each disclosure context the identifier m of the

respective disclosure transition is provided to identify the disclosure context,
as well as the share si

j from the threshold scheme currently associated with
the disclosure context, where si

j corresponds to the occurring transition.
Since the shares are labeled with the token identifier, the analysis engine
can keep track of the shares belonging to the same threshold scheme of
a disclosure context that is associated with the corresponding token. This
mechanism implements the idea of mismatch avoidance (cf. Sect. 14.3.2),
such that the mismatch problem described in Chap. 14 is not an issue.

Section 28.5 describes how the pseudonymizer actually generates the
pseudonymity-layer data for given application-layer audit data.
6 E(k̃o, k

i) cannot be used because ki protects all D-features within the disclosure
context i. However, merely F shall be disclosed.

270 28 Pseudonym Disclosure

28.5 Operation of the Pseudonymizer

In the following, the operation of the pseudonymizer is described. While it would
be possible to consider pseudonym disclosure independently from pseudonymiza-
tion, providing disclosure information for unpseudonymized audit data seems to
be pointless. Thus, the operation of the pseudonymizer for pseudonymization
with pseudonym linkability subject to technical purpose binding is considered to
be an integral part of the following description. The generation of pseudonyms in
the application-layer data and of salts in the pseudonymity-layer data are only
briefly referenced here. The required a priori knowledge for pseudonymization
and the details on choosing appropriate pseudonyms are described in Sect. 27.3.
The pseudonymizer requires a specification of the format of pseudonymity-layer
data. More importantly, the pseudonymizer needs to know a priori, which pseu-
donyms of D-features need to be disclosed subject to technical purpose binding
and which features need to be disclosed subject to organizational purpose bind-
ing. As described in Sect. 28.4 the specification of the possibility for pseudonym
disclosure subject to organizational purpose binding is provided manually for
each feature type.
Unlike the set-based approach in Part II and Part III, here the pseudonymizer
uses the same serial signature-nets as the IDS to determine, where pseudonym
disclosure subject to technical purpose binding is necessary. While this knowledge
is manually provided in the set-based approach, here it is automatically derived
from the given models of misuse scenarios during initialization. To do this, the
pseudonymizer constructs the graph H as described in Sect. 28.1 and generates
corresponding threshold scheme descriptions (see Sect. 28.3).
The pseudonymizer takes the original audit data as its input and outputs the
pseudonymized audit data as well as the pseudonymity-layer data. During op-
eration the pseudonymizer processes the next audit record from the queue of
incoming audit records, just like the IDS. The processing differs moderately from
the processing of the analysis engine of the IDS. Using the a priori knowledge,
the pseudonymizer additionally locates features that need to be pseudonymized
and determines, which of the pseudonyms need to be disclosed. Then, the pseu-
donymizer carefully generates appropriate pseudonyms and provides the corre-
sponding disclosure information. After inserting the disclosure information in the
pseudonymity-layer data, and after replacing the original features with the cor-
responding pseudonyms, the pseudonymizer forwards the pseudonymized audit
data and the pseudonymity-layer data to the IDS. That is, the pseudonymizer
does not execute actions when (partial) complex events occur.
Pseudonym disclosure requires some additional state. Since pseudonym disclo-
sure is tied to individual tokens, each token is associated with its own token
extension. A token extension comprises the following elements:

• the token identifier (see Sect. 28.4),

28.5 Operation of the Pseudonymizer 271

• for each disclosure context (identified by its disclosure transition identifier
m) (see Sect. 28.3):
– the secret s1 for the first partition
– the scheme for the current partition

When a token is generated from scratch, also a token extension is generated. The
fields of the extension are initialized with fixed NULL values, and the extension
is associated with the token. When a token is generated as a copy of a parent
token, also the parent token’s extension is copied and this copy is associated with
the token copy.
For a given current audit record the pseudonymizer executes the process of tran-
sition activation for all signature-nets. For a given transition the (unified) tokens
that are considered during activation are virtual copies of the tokens from the
input place of the transition. When a (unified) token meets the inter-event con-
ditions, an actual copy is made, including the associated token extensions. The
transition occurrence is processed on this copy, including the associated copy of
the token extensions.
After the transition activation phase the application-layer pseudonyms are chosen
as described in Sect. 27.3 and pushed on a stack. Additionally, the salts s for
CL-feature pseudonyms p are inserted in the pseudonymity-layer. Note, that the
pseudonym-salt pairs 〈p, s〉 are considered to be token-independent, because they
may be evaluated by several transitions in several serial signature-nets. Hence,
no token identifier accompanies the salt information.
Subsequently, the transition occurrence phase is processed. For a given activating
(unified) token for a given transition with identifier l the provision of disclosure
information comprises three phases:

1. determining the token identifier,
2. providing a share for each disclosure context, and
3. providing (encrypted) features.

The first phase of determining the token identifier can be hooked into the ex-
ecution of token bindings. The string a of token bindings is initialized as an
empty string. When a feature is assigned to a token variable v, the correspond-
ing 〈f, p〉 pair is looked up in the stack where the pseudonyms are stored for
later use (see Sect. 27.3). Then, 〈v : p〉 is concatenated to the end of a. After all
token bindings have been performed, the token identifier for the (unified) token
is updated to oout := h(l|oin|a) in the token extension, where oin is the former
token identifier. Before any (encrypted) features or shares are provided in the
pseudonymity-layer, the token identifier oout is provided.
In the second phase, the occurrence of the current transition is accounted for by
providing the corresponding share for each disclosure context that contains the

272 28 Pseudonym Disclosure

transition. For each disclosure context only the scheme for the last used parti-
tion is held in the token extension. For a given disclosure context the identifier
l of the current transition is used to determine the current partition i. If the
disclosure context does not contain the transition (l > m, m: transition identi-
fier of the disclosure transition of the disclosure context) no share is provided
in the pseudonymity-layer. If no scheme is initialized in the token extension, a
new scheme is instantiated for the first partition according to the corresponding
scheme description of the disclosure context (see Sect. 28.3), and the scheme
secret s1 is copied to the respective field in the token extension. Note, that the
secret s1 is used for encryption key generation and is individually stored in the
token extension before the scheme of the first partition gets replaced by the
scheme of another partition. If an existing scheme belongs to the previous par-
tition i− 1, a new scheme is instantiated according to the corresponding scheme
description, and the old scheme is replaced by the newly generated scheme.
Now exists a valid scheme for the current partition, and the share si

j corre-
sponding to the current transition is retrieved. The share is labeled with the
identifier m of the disclosure transition of the current disclosure context, such
that 〈m, si

j〉 is provided in the pseudonymity-layer. Share provision and possibly
scheme instantiation is performed for all disclosure contexts that contain the cur-
rent transition. Note, that no shares are provided for escape transitions, because
they are not associated with any disclosure context.
In the third phase, the features of the current event are determined, for which
disclosure information must be provided. Features that are disclosed subject to
technical purpose binding are identified using the graph H (see Sect. 28.1). For
the current transition identifier l the vertices for D-features are identified and
the following information is provided in the pseudonymity-layer:

τ1 = (l, bvf, v, f): if an edge (τ1, τ2) exists with
τ2 = (j, dv, v): with l < j,

for technical purpose binding only: 〈v, p, E(ki, F)〉
for technical and organizational purpose binding:
〈v, p, E(ki, F), E(k̃o, F)〉

τ2 = (j, dv, v) ∨ τ2 = (j, df, f): with l = j, (see case (1) in Sect. 28.4.1)
for technical purpose binding only: 〈v, p, F 〉
for organizational purpose binding only: 〈v, p, E(k̃o, F)〉

τ1 = (l, df, f): and no edge (τ1, τ2) exists with τ2 = (j, bvf, v, f), l = j, (see case
(1) in Sect. 28.4.1)
for technical purpose binding only: 〈p, F 〉
for organizational purpose binding only: 〈p,E(k̃o, F)〉

The pseudonym p for a feature type f is retrieved from the stack where the
pseudonyms are stored for later use (see Sect. 27.3).

28.5 Operation of the Pseudonymizer 273

The key ki is determined as follows: The connected component of H that contains
τ1 is associated with a disclosure context. Using the current transition identifier l,
the current partition i of the disclosure context can be determined. For partition
i exists the corresponding scheme in the token extension (see phase two above).
From the scheme the share si

ti is retrieved and together with the secret s1 from
the token extension the key ki := s1 ⊕ si

ti is calculated.
Some feature types are not found in H, but are specified for pseudonym disclosure
subject to organizational purpose binding (see case (2) in Sect. 28.4.1). For these
feature types 〈p,E(k̃o, F)〉 is provided.
After generating the pseudonymity-layer data, the (unified) token including to-
ken bindings from phase one is placed in the output place of the current transi-
tion. In two cases no output token is generated and the token is removed: First,
if the output place is an escape place. Second, if the token identifier equals the
token identifier of another token that resides in the output place (duplicate to-
ken). Finally, if the input edge of the current transition is a consuming edge,
the input token is removed from the input place. Removing a token implies also
discarding the associated token extension.
This process is performed for all activating (unified) tokens for all activated tran-
sitions. After the transition occurrence phase, the application-layer pseudonyms
are popped from the stack and used to pseudonymize the current audit record
(see Sect. 27.3). When the current event has been completely processed, the
pseudonymized audit record and the corresponding pseudonymity-layer data are
provided to the IDS and the next event from the queue is processed.

28.5.1 Example Operation of the Pseudonymizer

In Fig. 28.4 we extend the example from Fig. 27.2 for pseudonym disclosure, also
using the disclosure requirements graph H from Fig. 28.1.
During initialization the pseudonymizer loads the a priori knowledge including
the serial signature-nets. Then, the pseudonymizer constructs the linkability re-
quirements graph G (not shown in Fig. 28.4, see Fig. 27.2) and the disclosure
requirements graph H. In G the pseudonymizer associates the connected compo-
nent with an empty pseudonym mapping. Using H, the pseudonymizer associates
the connected component with the disclosure context of t2, determines the par-
tition of the disclosure context and generates the signature description for the
partition. Then, token 1 in the initial place is associated with an initialized token
extension.
After initialization, the pseudonymizer is ready to process incoming audit
records. Each audit record is processed individually and at first the embedded
event is extracted from the current audit record. Fig. 28.4 depicts two events
with the event types e1 and e2.

274 28 Pseudonym Disclosure

321

12

3

t2t1

v : 5 v : 5

true

e1

oid! = 0

v := oid

v == oid

e2

true

alert(v)

s1 := r()

threshold: 2
start: 1

s1
1 := r() s1

2 := s1 − s1
1

e1 oid : 5

e1 oid : h(3|5) e2 oid : h(3|5)

e2 oid : 5

〈2, 82〉〈v, h(3|5), E(10, 5)〉

〈h(3|5), 3〉 h(1|NULL|v : h(3|5)) h(2|h(1|NULL|v : h(3|5)))

〈2, 65〉

original events:

pseudonymized events:

pseudonymity-layer:

secret s1: NULL
partition 1 scheme: NULL

token id: NULL

H

τ3 τ4

1, bvf, (n1, v), (e1, oid) 2, dv, (n1, v)

context: 2
disclosure

context: 2
disclosure

+ +

partition 1

token extensions:

n1 :

partitioning and scheme description of the disclosure context of t2:

partition 1 scheme:
s1 = 47

token id: h(1|NULL|v : h(3|5))

s1
2 = 65s1

1 = 82

secret
partition 1 scheme:
s1 = 47

token id: h(2|h(1|NULL|v : h(3|5)))

s1
2 = 65s1

1 = 82

secret s1 : 47

s1 : 47

Fig. 28.4. Example operation of the pseudonymizer (linkability and disclosure)

28.5 Operation of the Pseudonymizer 275

When the first event is processed, transition t1 is activated for token 1. The pseu-
donymizer is configured to pseudonymize the feature types (e1, oid) and (e2, oid).
Using H, the pseudonymizer has determined that (e1, oid) is a D-feature, which
needs to be disclosed subject to technical purpose binding when t2 occurs. More-
over, no features have been specified to be disclosed subject to organizational
purpose binding. The feature 5 in the current event e1 is a PL/CL-feature w.r.t.
t1. The vertex τ1 represents t1 and the feature type (e1, oid) in G (see Fig. 27.2).
As described in Sect. 27.3.1 the pseudonymizer chooses the pseudonym h(3|5) for
the feature, commits it to the pseudonym mapping, provides the salt 〈h(3|5), 3〉
in the pseudonymity-layer, and pushes the pseudonym to the stack.
After the transition activation phase, t1 occurs and performs the token binding.
When the feature 5 is assigned to the token variable v, the corresponding pseu-
donym h(3|5) is retrieved from the the stack and v : h(3|5) is appended to the
initialized/empty string a. The pseudonymizer determines the token identifier
using the transition identifier 1 of t1, the former token identifier from the token
extension (NULL), and the string of token bindings a: h(1|NULL|v : h(3|5)).
The token identifier is inserted in the pseudonymity-layer and in the token ex-
tension. The pseudonymizer also provides appropriate linkage between the token
identifier and the current application-layer audit record (not shown in Fig. 28.4).
Using H, the pseudonymizer determines the connected component containing
τ3, which represents t1. The connected component is associated with the disclo-
sure context of the disclosure transition t2, represented by τ4. Since 1 ≤ 2, i.e.
the current transition t1 occurs before the disclosure transition t2 occurs, t1 is
contained in partition 1 of the disclosure context. Since there is no instantiated
scheme for partition 1 in the token extension, a new scheme is generated accord-
ing to the scheme description of partition 1. The secret of the scheme is copied
in the token extension. Then, share s1

1 = 82, which corresponds to t1, is provided
in the pseudonymity-layer together with the disclosure transition identifier 2 of
the disclosure context: 〈2, 82〉.
For D-feature 5 the disclosure information is computed as E(10, 5), where 10 =
47 ⊕ 65 = s1 ⊕ s1

2 mod 100 (see the black frames in the extension of token 2 in
Fig. 28.4). The pseudonym h(3|5) for the corresponding D-feature is retrieved
from the stack and inserted in the pseudonymity-layer together with the name
v of the variable to which the D-feature is bound: 〈v, h(3|5), E(10, 5)〉.
Then, the pseudonymizer replaces the feature 5 in the original event with the
pseudonym h(3|5), which is popped from the stack. The token with the modified
binding and extension is output as token 2 in the output place of t1. This finishes
the processing of the first event and the second event is processed.
Since the token variable-value assignment v : 5 satisfies the inter-event condition
of transition t2, t2 is activated. The pseudonymizer determines that the PL-
feature type (e2, oid) needs to be pseudonymized, fetches the pseudonym h(3|5)
from the pseudonym mapping and pushes it on the stack.

276 28 Pseudonym Disclosure

After transition activation, t2 occurs for token 2. Since t2 performs no token
binding, the string a remains empty, such that the token identifier computes
to h(2|h(1|NULL|v : h(3|5))), where h(1|NULL|v : h(3|5)) is the former token
identifier from the (copy of the) extension of token 2. The token identifier is
inserted in the pseudonymity-layer and updated in the token extension.
Then, the pseudonymizer determines that t2 is contained in partition 1 of the
disclosure context for t2 (identifier 2). The existing scheme in the token exten-
sion is used to provide the share s1

2 = 65 in the pseudonymity-layer, because it
represents the occurrence of t2: 〈2, 65〉.
Since the action of t2 uses the variable v as a parameter, but not a feature from
e2, no disclosure information needs to be provided in the pseudonymity-layer.
The disclosure information for v was already provided when e1 was processed
(see above).
Finally, the token together with its extension is placed as token 3 in the output
place of t2. After t2 occurred, the pseudonym is popped from the stack and
replaces the original feature in e2.
Figure 28.4 depicts the disclosure requirements graph H for the serial signature-
net n1 and the connected component of H, as well as the partitioning and the
scheme description for the disclosure context of the connected component. Also,
n1 and its marking are depicted together with the token extensions for the mark-
ing after the processing of the two events. Finally, the two events in their original
form and in the pseudonymized form as well as the corresponding pseudonymity-
layer data are shown.

28.6 Operation of the Analysis Engine

In the following, the operation of audit data analysis is described for pseudony-
mous application-layer audit data, considering the aspects of pseudonym linkabil-
ity and pseudonym disclosure. Only the necessary extensions are described, which
need to be made to the analysis engine, such that it can analyze pseudonymized
audit data and disclose D-features before transition actions are executed. The
analysis engine is supposed to disclose pseudonyms of D-features before action
execution. Pseudonyms of non-D-features, which have been manually specified
to be subject to organizational purpose binding, are not disclosed by the analysis
engine, because it has no grounds to decide, in what cases disclosure should be
performed (see case (2) in Sect. 28.4.1).
The analysis engine requires a specification of the format of pseudonymity-layer
data. The analysis engine also needs to know, which pseudonyms of D-features
need to be disclosed subject to technical purpose binding and which D-feature
pseudonyms need to be disclosed subject to organizational purpose binding.

28.6 Operation of the Analysis Engine 277

Note, that the latter are those D-features that need to be disclosed immedi-
ately (see case (1) in Sect. 28.4.1). For testing CL-features, the analysis engine
also needs to know, which CL-features are pseudonymized.
In order to extract shares for threshold schemes and to recover secrets, the analy-
sis engine needs to know the disclosure requirements, the disclosure contexts and
the threshold scheme descriptions. While this knowledge is manually provided
in the set-based approach, here it is automatically derived from the models of
misuse scenarios during initialization. To do this, the analysis engine constructs
the disclosure requirements graph H as described in Sect. 28.1 and generates
threshold scheme descriptions with a slightly different meaning as described in
Sect. 28.3:

• The shares si
1, . . . , s

i
ti−1 are extracted from the pseudonymity-layer. For the

last partition the share si
ti is also extracted from the pseudonymity-layer. For

all other partitions, the share is a copy of the reconstructed secret of the next
partition: si

ti := si+1.

• The secret of a threshold scheme for partition i is computed as si :=
∑ti

j=1 si
j .

Pseudonym disclosure requires additional state. Since pseudonym disclosure is
tied to individual tokens, each token is associated with its own token extension.
A token extension comprises the following elements:

• the token identifier (see Sect. 28.4),
• for each D-feature variable binding the disclosure information that has been

extracted from the pseudonymity-layer and recovered from the threshold
schemes (see Sect. 28.4.2),

• for each disclosure context (identified by its disclosure transition identifier
m) (see Sect. 28.3) the shares for all partitions, which have been extracted
from the pseudonymity-layer (see Sect. 28.4.2).

When a token is generated from scratch, also a token extension is generated,
its fields are initialized with fixed NULL values, and the extension is associated
with the token. It is important that token identifiers are initialized with the same
NULL values as used by the pseudonymizer. When a token is generated as a
copy of a parent token, also the parent token’s extension is copied and this copy
is associated with the token copy.
For a given current audit record, the analysis engine executes the process of
transition activation. Transition activation considers virtual copies of the tokens
from the input place of the transitions. During transition activation the analysis
engine must take care of pseudonymized CL-features as described in Sect. 27.4.
When a (unified) token meets the inter-event conditions, an actual copy is made,
including the associated token extension. The transition occurrence is processed
on this copy, including the associated copy of the token extensions.

278 28 Pseudonym Disclosure

After the transition activation phase, the transition occurrence phase is pro-
cessed. For a given activating (unified) token for a given transition with identifier
l the extraction and use of disclosure information comprises four phases:

1. determining the token identifier,
2. extracting shares for each disclosure context,
3. extracting (encrypted) features, and
4. disclosing original D-features.

The first phase of determining the token identifier can be hooked into the ex-
ecution of token bindings. The string a of token bindings is initialized as an
empty string. When a feature F , which may be a pseudonym, is assigned to a
token variable v, 〈v : F 〉 is concatenated to the end of a. After all token bindings
have been performed, the token identifier for the (unified) token is updated to
oout := h(l|oin|a) in the token extension, where oin is the former token identifier.
Before any (encrypted) features or shares can be extracted, the token identifier
oout is located in the pseudonymity-layer data. The analysis engine knows, which
shares and D-feature disclosure information it can expect in the pseudonymity-
layer and can notify the SSO, if the expected data is not found.
In the second phase, the occurrence of the current transition is accounted for
by extracting the corresponding share for each disclosure context containing the
transition. Each extracted share is labeled with the transition identifier of the
disclosure transition of the associated disclosure context: 〈m, si

j〉. Using m, the
share si

j is associated with the correct disclosure context in the token extension.
Using l, the share si

j is inserted at the correct position in the threshold scheme.
For each disclosure context, the shares for the schemes of all partitions are held
in the token extension, such that the secrets can later be recovered on demand.
In the third phase, the disclosure information for D-features is extracted from
the pseudonymity-layer. Escrow data for pseudonym disclosure subject to orga-
nizational purpose binding is only extracted and used when D-features need to
be immediately disclosed. Also, the pseudonyms p in the disclosure information
are used only in case a D-feature is immediately disclosed without previously
being assigned to a variable (see phase four below). Note, that immediate D-
feature disclosure implies that the current transition executes actions that are
parameterized with a feature type of the current event.
Summarizing, the following information is extracted from the pseudonymity-
layer for a given D-feature type that is assigned to a variable: 〈v,E(ki, F)〉,
〈v, F 〉, or 〈v,E(k̃o, F)〉.
The fourth phase can be hooked in right before the execution of actions. For
each pseudonymous parameter of an action the following disclosure procedure is
used. If the D-feature is not assigned to a variable, its pseudonym p is looked up
in the pseudonymity-layer and a pair 〈p, F 〉 or 〈p,E(k̃o, F)〉 is extracted. Either

28.6 Operation of the Analysis Engine 279

the clear-text feature F can be directly used as a parameter, or it must be
disclosed subject to organizational purpose binding as described in Sect. 16.6.1
or Sect. 16.6.2.
If the D-feature pseudonym is assigned to a variable v, the disclosure information
in the token extension is used. If for v the (cached) clear-text value is available,
it is used as the parameter for the action. If the variable value is disclosed by
the same transition that has assigned the value to v, the value either is available
in clear-text 〈v, F 〉 or needs to be disclosed subject to organizational purpose
binding as described in Sect. 16.6.1 or Sect. 16.6.2: 〈v,E(k̃o, F)〉. Otherwise
the variable value needs to be disclosed subject to technical purpose binding:
〈v,E(ki, F)〉. The current transition identifier l directly identifies the relevant
disclosure context in the token extension. All shares for the schemes of the dis-
closure context should now be available for secret recovery. Beginning with the
last partition, the secrets are recovered according to the scheme description. The
secret s1 of the first scheme, as well as the last shares si

ti of all schemes, are stored
with the respective schemes in the token extension. Using H, the identifier of
the transition where the D-feature is assigned to v is determined, and from the
scheme of partition i containing the binding transition the share si

ti is retrieved.
Then, ki := s1⊕si

ti is calculated and used to decrypt E(ki, F), yielding F . Then,
F is cached with the corresponding variable in the token extension for the use
as a parameter of actions of later disclosure transitions.
When all pseudonymous action parameters have been disclosed, the action is
executed. After action execution the (unified) token may be placed in the output
place of the current transition. In two cases, no output token is generated, and
the token is removed: First, if the output place is an escape place. Second, if the
token identifier equals the token identifier of another token that resides in the
output place (duplicate token). Finally, if the input edge of the current transition
is a consuming edge, the input token is removed from the input place. Removing
a token implies also discarding the associated token extension.
This process is performed for all activating (unified) tokens for all activated
transitions. After the transition occurrence phase the current event has been
completely processed, and the next event from the queue is processed.

28.6.1 Example Operation of the Analysis Engine

Continuing the example from Sect. 28.5.1, we consider that the pseudonymized
audit data and the pseudonymity-layer data has been made available to the ana-
lysis engine for misuse detection. The basic functionality of the analysis engine
is described by the given serial signature-nets. For the example, we focus on the
serial signature-net n1 in Fig. 28.5.
During initialization, the analysis engine loads the a priori knowledge including
serial signature-nets. Then, the analysis engine constructs the disclosure require-
ments graph H. Using H, the analysis engine associates the connected compo-

280 28 Pseudonym Disclosure

321

12

3

t2t1

H

τ3 τ4

1, bvf, (n1, v), (e1, oid) 2, dv, (n1, v)

binding v : E(10, 5), 5

partition 1 scheme:
s1 = 47

token id: h(2|h(1|NULL|v : h(3|5)))

s1
2 = 65s1

1 = 82

e1 oid : h(3|5) e2 oid : h(3|5)

〈2, 82〉〈v, h(3|5), E(10, 5)〉

〈h(3|5), 3〉 h(1|NULL|v : h(3|5)) h(2|h(1|NULL|v : h(3|5)))

〈2, 65〉

pseudonymized events:

pseudonymity-layer:

v : h(3|5) v : h(3|5)

true

e1

v == oid

e2

true

alert(v)

oid! = 0

v := oid

s1 := s1
1 + s1

2

threshold: 2
start: 1

s1
2 := NULLs1

1 := NULL

binding v : E(10, 5)

partition 1 scheme:
s1 = NULL

token id: h(1|NULL|v : h(3|5))

s1
1 = 82 s1

2 = NULL

binding: NULL
partition 1 scheme: NULL

token id: NULL

+ +

partition 1

token extensions:

n1 :

partitioning and scheme description of the disclosure context of t2:

context: 2

context: 2

disclosure

disclosure

Fig. 28.5. Example operation of the analysis engine (linkability and disclosure)

28.6 Operation of the Analysis Engine 281

nent with the disclosure context of t2, determines the partition of the disclosure
context and generates the scheme description for the partition. Then, token 1
in the initial place is associated with an initialized token extension. The white
fields in the scheme description in Fig. 28.5 show the shares that are extracted
from the pseudonymity-layer during audit data processing, and the white field
in the token extensions show, which shares have already been extracted. After
initialization, the analysis engine is ready to process incoming pseudonymized
audit records.
When the first pseudonymized event is processed, the analysis engine detects
that the event type e1 is relevant for transition t1 and that t1 evaluates an intra-
event condition using the pseudonymized CL-feature h(3|5). Thus, the analy-
sis engine uses h(3|5) and the linkage between the pseudonym in the current
application-layer audit record and the pseudonymity-layer data (not shown in
Fig. 28.5) to locate the salt s = 3 in the pseudonymity-layer, pseudonymizes the
constant value as h(3|0) and evaluates the intra-event condition as described in
Sect. 27.4.1. The result is, that t1 is activated. After the transition activation
phase is finished, transition t1 occurs.
When t1 occurs and performs the token binding, the pseudonym h(3|5) is as-
signed to the token variable v and v : h(3|5) is appended to the initialized/empty
string a. The analysis engine determines the token identifier using the transition
identifier (1), the previous token identifier (NULL), and the string of token
bindings a: h(1|NULL|v : h(3|5)). The token identifier is updated in the token
extension and located in the pseudonymity-layer leveraging the linkage between
the token identifier and the current application-layer audit record (not shown in
Fig. 28.5).
Accounting for the occurrence of t1, the analysis engine extracts the pair 〈2, 82〉
for the disclosure context of t2 (transition identifier 2) from the pseudonymity-
layer. Using the current transition identifier l = 1 and the disclosure context
identifier 2 (for t2), the analysis engine locates the partition containing t1. Since
there is no instantiated scheme for partition 1 in the token extension, a new
scheme is initialized according to the scheme description of partition 1. Then
s1
1 = 82 is inserted in the scheme of partition 1.

After share extraction, the analysis engine extracts the disclosure information
from the pseudonymity-layer: 〈v, h(3|5), E(10, 5)〉. E(10, 5) is inserted in the to-
ken extension. Since there is no action to be executed for t1, the transition
occurrence phase is finished, and the next event is processed.
Since the event type e2 is relevant for transition t2, the inter-event condi-
tion of t2 is evaluated as described in Sect. 27.4.1, and t2 is activated. After
transition activation, t2 occurs for token 2. Since t2 performs no token bind-
ing, the string a remains empty, such that the token identifier computes to
h(2|h(1|NULL|v : h(3|5))), where h(1|NULL|v : h(3|5)) is the former token
identifier from the token extension. The token identifier is updated in the token

282 28 Pseudonym Disclosure

extension and located in the pseudonymity-layer. Then, share s1
2 is extracted

from the pseudonymity-layer and inserted in the token extension: 〈2, 65〉.
After share extraction, the parameter v of the action of t2 needs to be disclosed
subject to technical purpose binding. Using H, the identifier of the transition
(1) that assigned the D-feature pseudonym to v is determined as well as the
disclosure context (2). In the token extension the secret is determined as s1 :=
47 = 82 + 65 = s1

1 + s1
2 mod 100. Then, the decryption key is computed as

k1 := 10 = 47 ⊕ 65 = s1 ⊕ s1
2 mod 100 and used to decrypt E(10, 5), yielding

the original D-feature 5. The disclosed D-feature is cached for v in the token
extension for later transitions that may use v as an action parameter. Finally,
alert(5) is executed.
Figure 28.5 depicts the disclosure requirements graph H for the serial signature-
net n1 and the connected component of H, as well as the partitioning and
the scheme description for the disclosure context of the connected component.
Also, n1 and its marking are depicted together with the token extensions for
the marking after the processing of the two pseudonymous events. Finally, the
two pseudonymous events and the corresponding pseudonymity-layer data are
shown.

Summary

This book presents novel solutions to the problem that audit data for misuse
detection contains personal data, such that audit data collection and processing
generally conflict with user expectations and pertinent legislation w.r.t. privacy.
This conflict can be solved by appropriately replacing personal data with pseu-
donyms. Central to the solution is the concept of technical purpose binding,
warranting that the original personal data concealed by the pseudonyms can
only be revealed for an a priori specified purpose. The foundation of the solution
is laid by three key contributions:

• It is shown that audit data pseudonymization is a viable short-term solution
for lawful personal data protection, and that this solution is preferable over
other pseudonymization approaches w.r.t. cost of deployment.

• A novel approach for pseudonymizing audit data is presented, demonstrating
that pseudonymized audit data can be analyzed for misuse as effectively as
the original audit data.

• This is the first pseudonymization approach that effectively and efficiently
enforces purpose binding, such that the information provided by pseudonyms
is reduced to the amount necessary for misuse detection, and original personal
data can only be revealed, if a detected misuse warrants a response.

The presented solutions provide privacy protection officials (PPOs) with the
means to officiate the responsibility for personal data protection w.r.t. audit data,
while acquitting the site security officers (SSOs) from the conflict between secu-
rity objectives and statutorily required restrictions w.r.t. personal data. More-
over, users can rely on the protection of their personal data recorded in audit
data, and SSOs can respond timely and autonomously to detected misuse.
It has been shown how such a solution can be validated constructively, ana-
lytically, and experimentally by providing appropriate models and algorithms,
evaluating the soundness of the design, implementing a toolkit for pseudonymiza-
tion, and evaluating the performance of the toolkit.

284 28 Pseudonym Disclosure

A further major contribution of this book is the proposed architecture model for
secure and privacy-respecting authorizations. The model provides a systematic
view on architectures for secure and privacy-respecting authorizations, as well
as on their generic high-level properties. Starting from a set of required proper-
ties it allows to compare and select suitable architectures, either for designing
authorization systems from scratch, or to guide product selection. For each ar-
chitecture the control requirements are made explicit, such that they can be
taken into account during design, or can be used to verify the appropriateness
of control conditions in products.
Two major conclusions can be drawn from the work described in this book
and will hopefully be instrumental in advancing the state of the art in privacy-
respecting misuse detection:

Full vs. necessary linkability: It is not a necessary prerequisite of misuse detec-
tion that the amount of linkability in the original audit data is retained
during pseudonymization. The solutions presented in this book show that
the amount of linkability can be reduced in a fully automated way to the
amount necessary for the purpose of audit data analysis for misuse detection,
thereby potentially greatly reducing the working surface of an attacker. The
presented solutions are based on a general and carefully adapted framework
for modeling misuse scenarios, which has also been developed in this book.

Organizational vs. technical purpose binding: If the purpose binding for reveal-
ing original personal data is enforced externally w.r.t. the technical system,
it results in additional work load of the personnel and in a potential delay
of appropriate response to detected misuse. The solutions presented in this
book show that purpose binding can be securely enforced within and by the
system, thereby allowing for a timely and fully automated response.

A

Threshold Schemes
for Cryptographic Secret Sharing

In this appendix we briefly summarize the relevant fundamentals of the threshold
schemes we used in Part II and Part V for cryptographic secret sharing. Refer
to Stinson [211] for a more detailed exposition.
A (t, n)-threshold scheme is a specific cryptographic secret sharing scheme that
aims at sharing a secret s ∈ K among a set of n participants Pi, denoted as
P = {Pi : 1 ≤ i ≤ n}, such that any t participants can reconstruct s, but no
group of t − 1 or fewer participants can do so.
A dealer D �∈ P chooses s, and to share s among the participants in P he secretly
provides to each participant some partial information called a share (yi ∈ S),
such that no participant knows the share given to another participant.
Later, a subset of participants B ⊆ P may attempt to combine their shares to
reconstruct s. This should work for |B| ≥ t, but not for |B| < t.
In Sect. A.1 and Sect. A.2 we describe two methods of constructing (t, n)-
threshold schemes, which we adapted and used in Part II and Part V, respec-
tively.

A.1 Scheme of Shamir

For the scheme of Shamir we have a finite field K = S = ZP , where P ≥ n + 1
is prime.
During the initialization phase D chooses distinct public values xi ∈ ZP , xi �= 0,
and provides xi to Pi, 1 ≤ i ≤ n.
For share distribution D secretly chooses (independently at random)
a1, . . . , at−1 ∈ ZP for a polynomial p(x) = s +

∑t−1
j=1 aj · xj mod P , computes

the shares yi = p(xi) and provides yi to Pi, 1 ≤ i ≤ n.

286 A Threshold Schemes for Cryptographic Secret Sharing

A subset B ⊆ P of t participants can reconstruct p(x) and thus s by means of
Lagrange interpolation:

p(x) =
t∑

j=1

yij

∏

1≤o≤t,o�=j

x − xio

xij
− xio

.

However, the participants do not need to know the whole polynomial p(x). It
is sufficient to reconstruct s = p(0) by substituting x = 0 into the Lagrange
interpolation formula:

s =
t∑

j=1

yij

∏

1≤o≤t,o�=j

xio

xio
− xij

.

In the traditional application of Shamir’s scheme we can precompute and publish
for 1 ≤ j ≤ t:

bj =
∏

1≤o≤t,o�=j

xio

xio
− xij

,

Then we have

s =
t∑

j=1

bjyij
.

However, this optimization does not hold for the way Shamir’s scheme is used in
the solutions proposed in this book.

A.2 Scheme of Karnin, Greene and Hellman

A simplified construction for threshold schemes with K = S = ZP is possible in
the special case n = t.
For share distribution D secretly chooses (independently at random) the shares
y1, . . . , yt−1 ∈ ZP , computes the share yt = s −

∑t−1
j=1 yj mod P , and provides yi

to Pi, 1 ≤ j ≤ t.
In order to reconstruct s the t participants compute

s =
t∑

j=1

yj mod P.

References

1. Mark S. Ackerman, Lorrie F. Cranor, and Joseph Reagle. Privacy in e-commerce:
Examining user scenarios and privacy preferences. In Proceedings of the 1st ACM
Conference on Electronic Commerce, pages 1–8, Denver, Colorado, USA, 1999.

2. T. Alamaki, M. Björksen, P. Dornbach, C. Gripenberg, N. Gyórbíró, G. Márton,
Z. Németh, T. Skyttä, and M. Tarkiainen. Privacy enhancing service architec-
tures. In R. Dingledine and P. Syverson, editors, Proceedings of the International
Workshop on Privacy Enhancing Technologies, number 2482 in Lecture Notes
in Computer Science, pages 99–109, San Francisco, California, USA, April 2002.
Springer.

3. J. Allen, A. Christie, W. Fithen, J. McHugh, P. Pickel, and E. Stoner. State of
the practice of intrusion detection technologies. Technical Report CMU/SEI-99-
TR-028, ESC-99-028, Carnegie Mellon University, Software Engineering Institute,
January 2000.

4. Christian Altenschmidt, Joachim Biskup, Ulrich Flegel, and Yücel Karabulut.
Secure mediation: Requirements, design and architecture. Journal of Computer
Security, 11(3):365–398, June 2003.

5. James P. Anderson. Computer security threat monitoring and surveillance. Tech-
nical report, James P. Anderson Co., Fort Washington, Pennsylvania, USA, April
1980.

6. Stefan Axelsson. Research in intrusion detection systems: A survey. Techni-
cal Report 98-17, Department of Computer Engineering, Chalmers University of
Technology, Sweden, August 1999. Revised version.

7. Stefan Axelsson, Ulf Lindquist, and Ulf Gustafson. An approach to Unix secu-
rity logging. In Proceedings of the 21st National Information Systems Security
Conference, pages 62–75, Crystal City, Arlington, Virgina, USA, October 1998.

8. Rebecca Gurley Bace. Intrusion Detection. Macmillan Technical Publishing, 2000.
9. Bernd Baumgarten. Petri-Netze: Grundlagen und Anwendungen (in German).

BI-Wissenschaftsverlag, 1990.
10. Oliver Berthold, Hannes Federrath, and Marit Köhntopp. Project “Anonymity

and unobservability in the internet”. In Proceedings of the Workshop on Free-
dom and Privacy by Design / Conference on Freedom and Privacy, pages 57–65,
Toronto, Canada, April 2000. ACM.

288 References

11. Matt Bishop. A standard audit trail format. In Proceedings of the 18th National
Information Systems Security Conference, pages 136–145, Baltimore, Maryland,
USA, October 1995.

12. Joachim Biskup and Ulrich Flegel. On pseudonymization of audit data for in-
trusion detection. In H. Federrath, editor, Proceedings of the First International
Workshop on Privacy Enhancing Technologies, number 2009 in Lecture Notes in
Computer Science, pages 161–180, Berkeley, California, USA, July 2000. ICSI,
Springer.

13. Joachim Biskup and Ulrich Flegel. Threshold-based identity recovery for privacy
enhanced applications. In S. Jajodia and P. Samarati, editors, Proceedings of the
7th ACM Conference on Computer and Communications Security, pages 71–79,
Athens, Greece, November 2000. ACM SIGSAC, ACM Press.

14. Joachim Biskup and Ulrich Flegel. Transaction-based pseudonyms in audit data
for privacy respecting intrusion detection. In H. Debar, L. Mé, and S. F. Wu,
editors, Proceedings of the Third International Symposium on Recent Advances in
Intrusion Detection (RAID 2000), number 1907 in Lecture Notes in Computer
Science, pages 28–48, Toulouse, France, October 2000. Springer.

15. Joachim Biskup and Ulrich Flegel. Ausgleich von Datenschutz und Überwachung
mit technischer Zweckbindung am Beispiel eines Pseudonymisierers (in German).
In S. Schubert, B. Reusch, and N. Jesse, editors, Informatik bewegt, Proceedings of
the 32nd Annual GI Conference on Informatics (Informatik 2002), number P-19
in Lecture Notes in Informatics, pages 488–494, Dortmund, Germany, October
2002. GI, GI LNI.

16. Joachim Biskup, Ulrich Flegel, and Yücel Karabulut. Secure mediation: Require-
ments and design. In S. Jajodia, editor, Proceedings of the 12th international
IFIP TC11 WG 11.3 Working Conference on Database Security, pages 127–140,
Chalkidiki, Greece, July 1998. IFIP, Kluwer Academic Publishers.

17. Joachim Biskup, Ulrich Flegel, and Yücel Karabulut. Towards secure media-
tion. In A. Böhm, D. Fox, R. Grimm, and D. Schoder, editors, Security and
Electronic Commerce, DuD-Fachbeiträge, pages 93–106, Essen, Germany, Octo-
ber 1999. Vieweg.

18. Joachim Biskup and Yücel Karabulut. A hybrid PKI model with an application
for secure meditation. In S. Shenoi, editor, Proceedings of the 16th Annual IFIP
WG 11.3 Working Conference on Data and Application Security, pages 271–282,
Cambridge, England, July 2002. Kluwer.

19. Joachim Biskup and Yücel Karabulut. Mediating between strangers: A trust
management based approach. In Proceedings of the 2nd Annual PKI Research
Workshop, pages 80–95, Gaitherburg, Maryland, USA, April 2003. NIST.

20. Dan Boneh and Matt Franklin. Anonymous authentication with subset queries.
In Proceedings of the 6th ACM Conference on Computer and Communications
Security, pages 113–119, Kent Ridge Digital Labs, Singapore, November 1999.
ACM SIGSAC, ACM Press.

21. Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Language
User Guide. Object Technology Series. Addison Wesley, 2005.

22. J. J. Borking, B. M. A. van Eck, and P. Siepel. Intelligent software agents and
privacy. Technical report, Registratiekamer Netherlands and Information and
Privacy Commissioner Ontario, Canada, Achtergrondstudies en Verkenningen 13,
The Hague, 1999.

23. John Borking. Der Identity Protector (in German). Datenschutz und Datensicher-
heit, 20(11):654–658, November 1996.

References 289

24. Stefan A. Brands. Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge, Massachusetts, USA, 2000.

25. Lars Brückner. Aktiver Datenschutz mit Datajournals (in German). Datenschutz
und Datensicherheit, 27(5):300, May 2003.

26. Bundesamt für Sicherheit in der Informationstechnik, Godesberger Allee 185-
189, 53133, Bonn, Germany. Einführung von Intrusion-Detection-Systemen –
Rechtliche Aspekte (in German), October 2002. http://www.bsi.de/literat/
studien/ids02/dokumente/Rechtv10.pdf.

27. Der Deutsche Bundestag. Gesetz über den Datenschutz bei Telediensten
(TDDSG) (in German). Bundesgesetzblatt, Teil I, (70):3721, December 2001.
http://bundesrecht.juris.de/bundesrecht/tddsg/.

28. Der Deutsche Bundestag. Grundgesetz für die Bundesrepublik Deutschland
(GG) (in German). Bundesgesetzblatt, Teil I, (53):2863, July 2002. http:
//bundesrecht.juris.de/bundesrecht/gg/.

29. Der Deutsche Bundestag. Bundesdatenschutzgesetz (BDSG) (in German). Bun-
desgesetzblatt, Teil I, (3):66, January 2003. http://bundesrecht.juris.de/
bundesrecht/bdsg_1990/.

30. Der Deutsche Bundestag. Gesetz über Rahmenbedingungen für elektronische Sig-
naturen (SIGG) (in German). Bundesgesetzblatt, Teil I, (1):2, January 2005.
http://bundesrecht.juris.de/bundesrecht/sigg_2001/.

31. Thomas Butzlaff, Florian Jäger, Björn Röber, David Weber, and Andreas Wilms.
Marktchancen von Anonymisierung (in German). Datenschutz und Datensicher-
heit, 27(3):146–149, March 2003.

32. Roland Büschkes and Dogan Kesdogan. Privacy enhanced intrusion detection. In
G. Müller and K. Rannenberg, editors, Multilateral Security in Communications,
Information Security, pages 187–204. Addison Wesley, 1999.

33. Jan Camenisch and Anna Lysyanskaya. Efficient revocation of anonymous group
membership certificates and anonymous credentials. http://eprint.iacr.org/
2001, December 2001.

34. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In B. Pfitzmann,
editor, Advances in Cryptology – EUROCRYPT 2001, number 2045 in Lecture
Notes in Computer Science, pages 93–118, Austria, May 2001. Springer.

35. Jan Camenisch, Ueli Maurer, and Markus Stadler. Digital payment systems with
passive anonymity-revoking trustees. In E. Bertino, H. Kurth, G. Martella, and
E. Montolivo, editors, Proceedings of the 4th European Symposium on Research in
Computer Security (ESORICS’96), number 1146 in Lecture Notes in Computer
Science, pages 33–43, Rome, Italy, September 1996. Springer.

36. Jan Camenisch and Markus Stadtler. Efficient group signature schemes for large
groups. In B. S. Kaliski, editor, Proceedings of the Conference on Advances in
Cryptology (CRYPTO’97), number 1294 in Lecture Notes in Computer Science,
pages 410–424, Santa Barbara, California, USA, August 1997. Springer.

37. National Computer Security Center. US DoD Standard: Department of Defense
Trusted Computer System Evaluation Criteria. DOD 5200.28-STD, Supercedes
CSC-STD-001-83, dtd 15 Aug 83, Library No. S225,711, December 1985. http:
//csrc.ncsl.nist.gov/secpubs/rainbow/std001.txt.

38. National Computer Security Center. Audit in trusted systems. NCSC-TG-001, Li-
brary No. S-228,470, July 1987. http://csrc.ncsl.nist.gov/secpubs/rainbow/
tg001.txt.

290 References

39. Privacy survey results, January 2002. http://www.cdt.org/privacy/survey/
findings/.

40. Yuen-Yan Chan. On privacy issues of internet access services via proxy servers.
In R. Baumgart, editor, Proceedings of the Congress on Secure Networking –
CQRE[Secure]’99, number 1740 in Lecture Notes in Computer Science, pages
183–191, Düsseldorf, Germany, November 1999. secunet, Springer.

41. David Chaum. Untraceable electronic mail, return addresses, and digital signa-
tures. Communications of the ACM, 24(2):84–88, February 1981.

42. David Chaum. Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM, 28(10):1030–1044, October 1985.

43. David Chaum. Showing credentials without identification – signatures transferred
between unconditionally unlinkable pseudonyms. In Advances in Cryptology –
EUROCRYPT 1985, number 219 in Lecture Notes in Computer Science, pages
241–244, Linz, Austria, April 1986. Springer.

44. David Chaum. Security without identification – card computers to make
big brother obsolete. http://www.chaum.com/articles/Security_Wthout_
identification.htm, 1987. Extended version of [42].

45. David Chaum. Showing credentials without identification: Transferring sig-
natures between unconditionally unlinkable pseudonyms. In J. Seberry and
J. Pieprzyk, editors, Proceedings of the Conference on Advances in Cryptology
(AUSCRYPT’90), number 453 in Lecture Notes in Computer Science, pages 246–
264, Sydney, Australia, January 1990. Springer.

46. David Chaum and Jan-Hendrik Evertse. A secure and privacy-protecting protocol
for transmitting personal information between organizations. In A. M. Odlyzko,
editor, Proceedings of the Conference on Advances in Cryptology (CRYPTO’86),
number 263 in Lecture Notes in Computer Science, pages 118–167, Santa Barbara,
California, USA, August 1987. Springer.

47. David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In
S. Goldwasser, editor, Proceedings of the Conference on Advances in Cryptol-
ogy (CRYPTO’88), Lecture Notes in Computer Science, pages 319–327, Santa
Barbara, California, USA, August 1988. Springer.

48. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private in-
formation retrieval. Journal of the ACM, 45(6):965–981, November 1998.

49. Søren Christensen and Niels Damgaard Hansen. Coloured petri nets extended with
place capacities, test arcs and inhibitor arcs. In M. A. Arsan, editor, Proceedings
of the 14th International Conference on Application and Theory of Petri Nets,
number 691 in Lecture Notes In Computer Science, pages 186–205. Springer, June
1993.

50. Joris Claessens, Bart Preneel, and Joos Vandewalle. Anonymity controlled elec-
tronic payment systems. In Proceedings of the 20th Symposium on Information
Theory in the Benelux, pages 109–116, Haasrode, Belgium, May 1999.

51. Sebastian Clauß and Marit Köhntopp. Identity management and its support of
multilateral security. Computer Networks, 37(2):205–219, 2001.

52. Sebastian Clauß, Andreas Pfitzmann, Marit Hansen, and Els Van Herreweghen.
Privacy-enhancing identity management. In IPTS Report Vol. 67, pages 8–16.
Institute for Prospective Technological Studies (IPTS) of the Joint Research
Center (JRC) of the European Commission, Seville, Spain, September 2002.
http://www.jrc.es/pages/iptsreport/vol67/english/IPT2E676.html.

53. Common Criteria Implementation Board. Common criteria for information tech-
nology security evaluation — part 2: Security functional requirements, version

References 291

3.1, revision 1. Technical Report CCMB-2006-09-002, National Institute of Stan-
dards and Technology, September 2006. http://www.commoncriteriaportal.
org/public/files/CCPART2V3.1R1.pdf.

54. Lorrie Cranor, Marc Langheinrich, Massimo Marchiori, Martin Presler-Marshall,
and Joseph Reagle. The Platform for Privacy Preferences 1.0 (P3P1.0) specifica-
tion, September 2001. http://www.w3.org/TR/2001/WD-P3P-20010928/.

55. Lorrie F. Cranor. Agents of choice: Tools that facilitate notice and choice about
web site data practices. In Proceedings of the 21st International Conference on
Privacy and Personal Data Protection, pages 19–25, Hong Kong SAR, China,
September 1999.

56. Frédéric Cuppens and Rodolphe Ortalo. Lambda: A language to model a database
for detection of attacks. In H. Debar, L. Mé, and S. F. Wu, editors, Proceedings
of the Third International Symposium on Recent Advances in Intrusion Detection
(RAID 2000), number 1907 in Lecture Notes in Computer Science, pages 197–216,
Toulouse, France, October 2000. Springer.

57. M. Dacier, editor. Proceedings of the First International Symposium on Recent
Advances in Intrusion Detection (RAID’98), Lovain-la-Neuve, Belgium, Septem-
ber 1998. http://www.zurich.ibm.com/~dac/Prog_RAID98/Table_of_content.
html.

58. Ivan Damgard. Payment systems and credential mechanisms with provable se-
curity against abuse by individuals. In S. Goldwasser, editor, Proceedings of the
Conference on Advances in Cryptology (CRYPTO’88), Lecture Notes in Computer
Science, pages 328–335, Santa Barbara, California, USA, August 1988. Springer.

59. Herbert Damker, Ulrich Pordesch, and Martin Reichenbach. Personal reachability
and security management. In G. Müller and K. Rannenberg, editors, Multilateral
Security in Communications, Information Security, pages 95–111. Addison Wesley,
1999.

60. Rene David and Hassane Alla. Petri Nets and Grafcet: Tools for Modelling Dis-
crete Event Systems. Prentice-Hall, 1992.

61. George Davida, Yair Frankel, Yiannis Tsiounis, and Moti Yung. Anonymity con-
trol in e-cash systems. In R. Hirschfeld, editor, Proceedings of the First Interna-
tional Conference on Financial Cryptography (FC’97), number 1318 in Lecture
Notes in Computer Science, pages 1–16, Anguilla, British West Indies, February
1997. Springer.

62. B. De Win, V. Naessens, C. Díaz, S. Seys, C. Goemans, J. Claessens, B. De Decker,
J. Dumortier, and B. Preneel. Anonymity and privacy in electronic services
(APES) Deliverable 3 – Technologies overview. Technical report, K. U. Leuven,
November 2001.

63. Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of intrusion-
detection systems. Technical Report 93076, IBM Research Division, Zurich Re-
search Laboratory, 8803 Rüschlikon, Switzerland, June 1998.

64. Arbeitskreis Technik der Konferenz der Datenschutzbeauftragten des Bundes
und der Länder. Datenschutzfreundliche Technologien in der Telekommunikation
(in German), October 1997. Revised version.

65. Enquete-Kommission “Zukunft der Medien in Wirtschaft und Gesellschaft”.
Deutschlands Weg in die Informationsgesellschaft (Schlussbericht) (in German).
Bundestags-Drucksache 13/11004, June 1998.

66. Erster Senat des Bundesverfassungsgerichts. Urteil vom 15. Dezember 1983
zum Volkszählungsgesetz - 1 BvR 209/83 u.a. (in German). Datenschutz und

292 References

Datensicherheit, 84(4):258–281, April 1984. http://www.datenschutz-berlin.
de/gesetze/sonstige/volksz.htm.

67. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In G. Brassard, editor,
Proceedings of the Conference on Advances in Cryptology (CRYPTO’89), num-
ber 435 in Lecture Notes in Computer Science, pages 307–315, Santa Barbara,
California, USA, August 1989. Springer.

68. Staatsvertrag über Mediendienste (MDStV) (in German). http://www.iid.de/
iukdg/gesetz/mdstv.html, February 1997.

69. Alexander Dix. Privacy Respecting Incident Management – Die Datenschutzsicht
(in German). Datenschutz und Datensicherheit (DuD), 29(7):389–392, July 2005.

70. C. Díaz, V. Naessens, J. Claessens, B. De Win, S. Seys, B. De Decker, and B. Pre-
neel. Anonymity and privacy in electronic services (APES) Deliverable 5 – Tools
for technologies and applications. Technical report, K. U. Leuven, November 2002.

71. Claudia Díaz, Joris Claessens, and Bart Preneel. APES — Anonymity and privacy
in electronic services. Datenschutz und Datensicherheit (DuD), 27(3):143–145,
March 2003.

72. Claudia Eckert. IT-Sicherheit: Konzepte – Verfahren – Protokolle. Oldenbourg,
second edition, 2003.

73. Claudia Eckert and Alexander Pircher. Internet anonymity: Problems and solu-
tions. In M. Dupuy and P. Paradinas, editors, Proceedings of the IFIP TC11 16th
International Conference on Information Security (Sec’01), pages 35–50, Paris,
France, June 2001. IFIP, Kluwer Academic Publishers.

74. Steven T. Eckmann, Giovanni Vigna, and Richard A. Kemmerer. STATL def-
inition. Technical Report TRCS20-19, Reliable Software Group, Department of
Computer Science, University of California, Santa Barbara, California, USA, June
2001.

75. Terry Escamilla. Intrusion Detection: Network Security Beyond the Firewall. Wi-
ley Computer Publishing. John Wiley & Sons, Inc., first edition, 1998.

76. Directive 95/46/EC of the European Parliament and of the Council of 24 october
1995 on the protection of individuals with regard to the processing of personal
data and on the free movement of such data. Official Journal L 281, October
1995. http://europa.eu.int/eur-lex/en/lif/dat/1995/en_395L0046.html.

77. Herbert Fiedler. Der Staat im Cyberspace (in German). Informatik Spektrum,
24(5):309–314, 2001.

78. Herbert Fiedler. Cyber-libertär (in German). Informatik Spektrum, 25(3):215–
219, 2002.

79. Simone Fischer-Hübner. IDA (Intrusion Detection and Avoidance System): Ein
einbruchsentdeckendes und einbruchsvermeidendes System (in German). Reihe
Informatik. Shaker, 1993.

80. Simone Fischer-Hübner. IT-Security and Privacy: Design and Use of Privacy-
Enhancing Security Mechanisms. Number 1958 in Lecture Notes in Computer
Science. Springer, 2001.

81. Simone Fischer-Hübner and Klaus Brunnstein. Opportunities and risks
of intrusion detection expert systems. In Proceedings of the International
IFIP-GI-Conference Opportunities and Risks of Artificial Intelligence Systems
(ORAIS’89), Hamburg, Germany, July 1989. IFIP.

82. Ulrich Flegel. Pseudonyme für Datenschutz und Überwachung: Anforderungen,
Ansatz, Implementierung und Analyse (in German). In Proceedings of the GI
Conference Informatics Days 2002, pages 307–311, Bad Schussenried, Germany,
November 2002. GI, Konradin.

References 293

83. Ulrich Flegel. Pseudonymizing Unix log files. Technical report, Dept. of Computer
Science, Chair VI - Information Systems and Security, University of Dortmund, D-
44221 Dortmund, Germany, May 2002. http://ls6-www.cs.uni-dortmund.de/
issi/archive/literature/2002/Flegel:2002a.pdf. Extended version of [84].

84. Ulrich Flegel. Pseudonymizing Unix log files. In G. Davida, Y. Frankel,
and O. Rees, editors, Proceedings of the Infrastructure Security Conference (In-
fraSec2002), number 2437 in Lecture Notes in Computer Science, pages 162–179,
Bristol, United Kingdom, October 2002. Springer.

85. Ulrich Flegel. Anonyme Audit-Daten im Überblick (in German). Datenschutz
und Datensicherheit (DuD), 27(5):278–281, May 2003.

86. Ulrich Flegel. Ein Architektur-Modell für anonyme Autorisierungen und
Überwachungsdaten (in German). Technical report, Dept. of Computer Science,
Chair - VI Information Systems and Security, June 2003. http://ls6-www.
cs.uni-dortmund.de/issi/archive/literature/2003/Flegel:2003d.pdf. Ex-
tended version of [87].

87. Ulrich Flegel. Ein Architektur-Modell für anonyme Autorisierungen und
Überwachungsdaten (in German). In R. Grimm, H. B. Keller, and K. Rannen-
berg, editors, Mit Sicherheit Informatik, Proceedings of the First GI Conference
on Security – Protection and Reliability (Sicherheit 2003), number P-36 in Lec-
ture Notes in Informatics, pages 293–304, Frankfurt, Germany, September 2003.
GI, GI LNI.

88. Ulrich Flegel. Praktikabler Datenschutz für Log-Daten (in German). In
R. Schaumburg and M. Thorbrügge, editors, Proceedings of the 10th DFN-CERT
Workshop on Security in Network Systems, DFN-CERT publications, pages F1–
F20, Hamburg, Germany, February 2003. DFN-CERT, Books on Demand.

89. Ulrich Flegel. Datenschutzfreundliche Missbrauchsentdeckung (in German).
Digma, 5(4):168–171, December 2005.

90. Ulrich Flegel. Evaluating the design of an audit data pseudonymizer using ba-
sic building blocks for anonymity. Technical report, Dept. of Computer Science,
Chair - VI Information Systems and Security, January 2005. http://ls6-www.
cs.uni-dortmund.de/issi/archive/literature/2005/Flegel:2005a.pdf. Ex-
tended version of [91].

91. Ulrich Flegel. Evaluating the design of an audit data pseudonymizer using basic
building blocks for anonymity. In H. Federrath, editor, Proceedings of the Second
GI Conference on Security – Protection and Reliability (Sicherheit 2005), number
P-62 in Lecture Notes in Informatics, pages 221–232, Regensburg, Germany, April
2005. GI, GI LNI.

92. Ulrich Flegel. Mit Affen-Spielzeug etwas über Haustiere lernen – Evaluierung von
PETs mittels APES-Bausteinen (in German). Datenschutz und Datensicherheit
(DuD), 29(7):410–414, July 2005.

93. Ulrich Flegel. Pseudonymizing Audit Data for Privacy Respecting Misuse Detec-
tion. PhD thesis, University of Dortmund, Dept. of Computer Science, January
2006.

94. Ulrich Flegel and Joachim Biskup. Requirements of information reductions for
cooperating intrusion detection agents. In Günter Müller, editor, Proceedings of
the International Conference on Emerging Trends in Information and Commu-
nication Security (ETRICS 2006), number 3995 in Lecture Notes in Computer
Science, pages 466–480, Freiburg, Germany, June 2006. Springer.

95. Ulrich Flegel and Michael Meier, editors. Proceedings of the First GI Conference
on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA

294 References

2004), number P-46 in Lecture Notes in Informatics, Dortmund, Germany, July
2004. GI SIG SIDAR, GI LNI.

96. Ulrich Flegel and Michael Meier. Herausforderungen für eine effektive, effiziente
und datenschutzgerechte IT-Frühwarnung (in German). In Proceedings of the BSI
Workshop on Early Warning Systems, pages 39–42, Bonn, Germany, July 2006.
BSI, BSI.

97. Internet Engineering Task Force. Security issues in network event logging (syslog),
July 2001. http://www.ietf.org/html.charters/syslog-charter.html.

98. Lothar Fritsch and Heiko Rossnagel. Die Krise des Signaturmarktes: Lösungsan-
sätze aus betriebswirtschaftlicher Sicht (in German). In H. Federrath, editor,
Proceedings of the Second GI Conference on Security – Protection and Reliability
(Sicherheit 2005), number P-62 in Lecture Notes in Informatics, pages 315–326,
Regensburg, Germany, April 2005. GI, GI LNI.

99. Eran Gabber, Phillip B. Gibbons, David M. Kristol, Yossi Matias, and Alain
Mayer. Consistent, yet anonymous, web access with LPWA. Communications of
the ACM, 42(2):42–47, February 1999.

100. Eran Gabber, Phillip B. Gibbons, David M. Kristol, Yossi Matias, and Alain
Mayer. On secure and pseudonymous client-relationships with multiple servers.
ACM Transactions on Information and System Security, 2(3):390–415, November
1999.

101. Eran Gabber, Phillip B. Gibbons, Yossi Matias, and Alain Mayer. How to make
personalized web browsing simple, secure and anonymous. In R. Hirschfeld, edi-
tor, Proceedings of the First International Conference on Financial Cryptography
(FC’97), number 1318 in Lecture Notes in Computer Science, pages 17–32, An-
guilla, British West Indies, February 1997. Springer.

102. Daniela Gerd tom Markotten and Uwe Jendricke. Identitätsmanagement im E-
Commerce (in German). it+ti Informationstechnik und Technische Informatik,
43(5):236–245, October 2001.

103. Ariel Glenn, Ian Goldberg, Frédéric Légaré, and Anton Stiglic. A description of
protocols for private credentials. http://eprint.iacr.org/2001, October 2001.

104. Ian Goldberg. Privacy-enhancing technologies for the internet, II: Five years
later. In R. Dingledine and P. Syverson, editors, Proceedings of the International
Workshop on Privacy Enhancing Technologies, number 2482 in Lecture Notes
in Computer Science, pages 1–12, San Francisco, California, USA, April 2002.
Springer.

105. Ian Goldberg, David Wagner, and Eric Brewer. Privacy enhancing tech-
nologies for the internet. In Proceedings of the COMPCON’97, San Jose,
California, USA, February 1997. IEEE. http://www.cs.berkeley.edu/~daw/
privacy-compcon97-www/privacy-html.html.

106. Claudia Golembiewski. Das Recht auf Anonymität im Internet (in German).
Datenschutz und Datensicherheit, 27(3):129–133, March 2003.

107. Dieter Gollmann. Computer Security, chapter 10.2.1: Kerberos, pages 168–171.
John Wiley & Sons, Inc. 1999.

108. Torbjörn Granlund. The GNU Multiple Precision Arithmetic Library. GNU, 3.1.1
edition, September 2000. http://www.gnu.org/manual/gmp/index.html.

109. Dimitris Gritzalis, Konstantinos Moulinos, John Iliadis, Costas Lambrinoudakis,
and Steven Xarhoulakos. Pythia: Towards anonymity in authentication. In
M. Dupuy and P. Paradinas, editors, Proceedings of the IFIP TC11 16th Inter-
national Conference on Information Security (Sec’01), pages 1–17, Paris, France,
June 2001. IFIP, Kluwer Academic Publishers.

References 295

110. Ben Handley. Resource-efficient anonymous group identification. In Y. Frankel,
editor, Proceedings of the 4th International Conference on Financial Cryptography
(FC’00), number 1962 in Lecture Notes in Computer Science, pages 295–312,
Anguilla, British West Indies, February 2000. Springer.

111. Marit Hansen. Identitätsmanagement (in German). Datenschutz und Datensicher-
heit, 27(5):306, May 2003.

112. Marit Hansen and Martin Rost. Nutzerkontrollierte Verkettung (in German).
Datenschutz und Datensicherheit, 27(5):293–296, May 2003.

113. Shouichi Hirose and Susumu Yoshida. A user athentication scheme with identity
and location privacy. In V. Varadharajan and Y. Mu, editors, Proceedings of
the 6th Australasian Conference on Information Security and Privacy (ACISP
2001), number 2119 in Lecture Notes in Computer Science, pages 235–246, Sydney,
Australia, July 2001. Springer.

114. Donna L. Hoffman, Thomas P. Novak, and Marcos A. Peralta. Information privacy
in the marketspace: Implications for the commercial uses of anonymity on the web.
The Information Society, 15(2):129–140, April 1999. http://elab.vanderbilt.
edu/research/papers/html/manuscripts/anonymity/anonymity2_nov10.htm.

115. Alex Iliev and Sean Smith. Privacy-enhanced credential services. In Proceedings
of the 2nd Annual PKI Research Workshop, Gaitherburg, Maryland, USA, April
2003. NIST.

116. Louis Harris & Associates Inc. IBM multi-national consumer privacy survey.
Technical Report 938568, IBM Global Services, 1999.

117. Sun Microsystems Inc. Solaris 2.6 System Administrator Collection, volume 1,
chapter SunSHIELD Basic Security Module Guide. Sun Microsystems, Inc., 1997.

118. R. H. Irving, Christopher A. Higgins, and Frank R. Safayeni. Computerized per-
formance monitoring systems: Use and abuse. Communications of the ACM,
29(8):794–801, 1986.

119. Stefan Jaeger. Verbotene Protokolle (in German). Zeitschrift für
Kommunikations- und EDV-Sicherheit (KES), 2000(5):6–12, 2000.

120. Stefan Jaeger. Wie viel Logfile ist erlaubt? Nach wie vor Rechtsunsicherheit
bei Protokoll-Dateien (in German). Zeitschrift für Kommunikations- und EDV-
Sicherheit (KES), (4):65–66, 2004.

121. Björn Markus Jakobsson. Privacy vs. Authenticity. PhD thesis, University of
California San Diego, 1997.

122. Uwe Jendricke and Daniela Gerd tom Markotten. Identitätsmanagement: Ein-
heiten und Systemarchitektur (in German). In D. Fox, M. Köhntopp, and A. Pfitz-
mann, editors, Proceedings of Verläßliche IT-Systeme - Sicherheit in komplexen
Infrastrukturen, DuD-Fachbeiträge, pages 77–85, Wiesbaden, Germany, Septem-
ber 2001. GI, Vieweg.

123. Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, volume 1 of EATCS Monographs on Theoretical Computer Science. Springer,
1992.

124. Ari Juels. Targeted advertising . . . and privacy too. In D. Naccache, editor,
Proceedings of The Cryptographers’ Track at RSA Conference 2001 - Progress in
Cryptology (CT-RSA 2001), Lecture Notes in Computer Science, pages 408–424,
San Francisco, California, USA, April 2001. Springer.

125. Yücel Karabulut. Secure Mediation Between Strangers in Cyberspace. PhD thesis,
University of Dortmund, Dortmund, Germany, September 2002.

126. E. D. Karnin, J. W. Greene, and M. E. Hellman. On secret sharing systems. IEEE
Transactions on Information Theory, (29):35–41, 1983.

296 References

127. Stephen Kent and Randall Atkinson. RFC 2401: Security Architecture for the
Internet Protocol, November 1998. http://www.ietf.org/rfc/rfc2401.txt.

128. Dogan Kesdogan, Roland Büschkes, and Jan Egner. Stop-and-go-mixes providing
probabilistic anonymity in an open system. In Proceedings of the 2nd Workshop
on Information Hiding (IHW’98), number 1525 in Lecture Notes in Computer
Science, pages 83–98. Springer, 1998.

129. Joe Kilian and Erez Petrank. Identity escrow. Theory of Cryptography Library,
August 1997. http://theory.lcs.mit.edu/pub/tcryptol/97-11.ps.

130. Joe Kilian and Erez Petrank. Identity escrow. In H. Krawczyk, editor, Proceedings
of the Conference on Advances in Cryptology (CRYPTO’98), number 1462 in
Lecture Notes in Computer Science, pages 196–185, Santa Barbara, California,
USA, August 1998. Springer.

131. Christopher Krügel, Fredrik Valeur, and Giovanni Vigna. Intrusion Detection and
Correlation – Challenges and Solutions, volume 14 of Advances in Information
Security. Springer, 2005.

132. Sandeep Kumar. Classification and Detection of Computer Intrusions. PhD thesis,
Purdue University, West Lafayette, Indiana, USA, 1995.

133. Christel Kumbruck. Verwirrungen um die Identität beim pseudonymen elektron-
ischen Einkaufen (in German). Datenschutz und Datensicherheit, 27(5):287–292,
May 2003.

134. Marit Köhntopp. Technischer Datenschutz in offenen Netzen (in German). In Pro-
ceedings of the 7th DFN-CERT Workshop on Sicherheit in vernetzten Systemen,
DFN-Bericht, Hamburg, Germany, March 2000. DFN-CERT.

135. Marit Köhntopp and Oliver Berthold. Identity management based on P3P. In
H. Federrath, editor, Proceedings of the First International Workshop on Privacy
Enhancing Technologies, number 2009 in Lecture Notes in Computer Science,
pages 141–160, Berkeley, California, USA, July 2000. ICSI, Springer.

136. Stefand Köpsell and Tobias Miosga. Strafverfolgung trotz Anonymität (in Ger-
man). Datenschutz und Datensicherheit (DuD), 29(7):403–409, July 2005.

137. Jia-Ling Lin, X. Sean Wang, and Sushil Jajodia. Abstraction-based misuse de-
tection: High-level specifications and adaptable strategies. In Proceedings of The
11th Computer Security Foundations Workshop, pages 190–201, Rockport, Massa-
chusetts, USA, June 1998. IEEE, IEEE Press.

138. Ulf Lindqvist and Phillip A. Porras. Detecting computer and network misuse
through the production-based expert system toolset (P-BEST). In Proceedings of
the IEEE Symposium on Research in Security and Privacy, pages 146–161, Los
Alamitos, California, USA, May 1999. IEEE, IEEE Press.

139. C. Lonvick. RFC 3164: The BSD syslog Protocol, August 2001. http://www.
ietf.org/rfc/rfc3164.txt.

140. Norbert Luckhardt. Aufsichtsbehörden bekennen Farbe (in German). Zeitschrift
für Kommunikations- und EDV-Sicherheit (KES), (4):2004, 67-69 2004.

141. Emilie Lundin and Erland Jonsson. Privacy vs. intrusion detection analysis. In
D. Frincke, editor, Proceedings of the Second International Symposium on Re-
cent Advances in Intrusion Detection (RAID’99), West Lafayette, Indiana, USA,
September 1999.

142. Emilie Lundin and Erland Jonsson. Some practical and fundamental problems
with anomaly detection. In Proceedings of NORDSEC’99, Kista Science Park,
Sweden, November 1999.

143. Emilie Lundin and Erland Jonsson. Anomaly-based intrusion detection: privacy
concerns and other problems. Computer Networks, 34(4):623–640, October 2000.

References 297

144. Teresa F. Lunt, R. Jagannathan, Rosanna Lee, Sherry Listgarten, David L. Ed-
wards, Peter G. Neumann, Harold S. Javitz, and Al Valdes. IDES: The enhanced
prototype, a real-time intrusion-detection expert system. Technical Report SRI-
CSL-88-12, SRI Project 4185-010, Computer Science Laboratory SRI Interna-
tional, 1988.

145. Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym
systems. In H. Heys and C. Adams, editors, Proceedings of the 6th Annual Inter-
national Workshop on Selected Areas in Cryptography (SAC’99), pages 184–199,
Kingston, Ontario, Canada, August 1999. Springer.

146. Greg Maitland and Colin Boyd. Fair electronic cash based on a group signature
scheme. In S. Qing, T. Okamoto, and J. Zhou, editors, Proceedings of the Third
International Conference on Information and Communications Security (ICICS
2001), number 2229 in Lecture Notes in Computer Science, pages 461–465, Xian,
China, November 2001. Springer.

147. John McHugh. Intrusion and intrusion detection. International Journal of Infor-
mation Security, 1(1):14–35, 2001.

148. Michael Meier. A model for the semantics of attack signatures in misuse detection
systems. In K. Zhang and Y. Zheng, editors, Proceedings of the 7th International
Information Security Conference (ISC 2004), number 3225 in Lecture Note in
Computer Science, pages 158–169, Palo Alto, California, USA, September 2004.
Springer.

149. Michael Meier. Intrusion Detection effektiv! Modellierung und Analyse von An-
griffsmustern (in German). X.systems.press. Springer, 2007.

150. Michael Meier, Niels Bischof, and Thomas Holz. Shedel – a simple description lan-
guage for specifying attack signatures. In A. Ghonaimy, M. El-Hadidi, and H. K.
Aslan, editors, Proceedings of the IFIP TC11 17th International Conference on
Information Security (Sec’02), Cairo, Egypt, May 2002. IFIP, Kluwer Academic
Publishers.

151. Michael Meier and Thomas Holz. Sicheres Schlüsselmanagement für verteilte
Intrusion-Detection-Systeme (in German). In P. Horster, editor, Systemsicherheit,
DuD-Fachbeiträge, pages 275–286, Bremen, Germany, March 2000. GI-2.5.3, ITG-
6.2, ÖCG/ACS, TeleTrusT, Vieweg.

152. Michael Meier, Sebastian Schmerl, and Hartmut König. Improving the efficiency
of misuse detection. In K. Julisch and C. Krügel, editors, Proceedings of the
Second GI Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA 2005), number 3548 in Lecture Notes in Computer Science,
pages 188–205, Vienna, Austria, July 2005. GI SIG SIDAR, Springer.

153. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. Discrete Mathematics and its Applications. CRC Press,
Inc., Boca Raton, Florida, USA, 1997.

154. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography, chapter 9: Hash Functions and Data Integrity. Discrete
Mathematics and its Applications. CRC Press, Inc., Boca Raton, Florida, USA,
1997.

155. Cédric Michel and Ludovic Mé. ADeLe: An attack description language for
knowledge-based intrusion detection. In M. Dupuy and P. Paradinas, editors,
Proceedings of the IFIP TC11 16th International Conference on Information Se-
curity (Sec’01), pages 353–368, Paris, France, June 2001. IFIP, Kluwer Academic
Publishers.

298 References

156. Greg Minshall. Tcpdpriv. http://ita.ee.lbl.gov/html/contrib/tcpdpriv.
html, August 1997.

157. Abdelaziz Mounji. Languages and Tools for Rule-Based Distributed Intrusion
Detection. PhD thesis, Facultés Universitaires Notre-Dame de la Paix, Namur,
Belgium, 1997.

158. Klaus Möller. Syslog: Praxis und kommende Standards (in German). In
R. Schaumburg and M. Thorbrügge, editors, Proceedings of the 10th DFN-CERT
Workshop on Security in Network Systems, DFN-CERT publications, pages I1–
I14, Hamburg, Germany, February 2003. DFN-CERT, Books on Demand.

159. Frank Müller. Schwellenwertsysteme mit mehreren Geheimnissen und ihre An-
wendungen (in German, diploma thesis). Master’s thesis, University of Dortmund,
Dept. of Mathematics, Dortmund, Germany, November 2001.

160. Frank Müller. Secure share invalidation in specialized threshold schemes. Memo
for internal discussion, 2005.

161. Toru Nakanishi, Nobuaki Haruna, and Yuji Sugiyama. Unlinkable electronic
coupon protocol with anonymity control. In M. Mombo and Y. Zheng, ed-
itors, Proceedings of the Second International Workshop on Information Secu-
rity (ISW’99), number 1729 in Lecture Notes in Computer Science, pages 37–46.
Springer, November 1999.

162. Heike Neumann. Anonyme Zahlungssysteme (in German). Datenschutz und
Datensicherheit, 27(5):270–273, May 2003.

163. Heise Newsticker. 13. WWW-Benutzer-Analyse von Fittkau & Maaß (in Ger-
man). http://www.ct.heise.de/newsticker/data/anw-26.11.01-001/, No-
vember 2001.

164. Peter Niebert. Petrinetze – Ein anschaulicher Formalismus der Nebenläufigkeit
(Teil 1) (in German). at - Automatisierungstechnik, 51(3):A5–A8, 2003.

165. Peter Niebert. Petrinetze – Ein anschaulicher Formalismus der Nebenläufigkeit
(Teil 2) (in German). at - Automatisierungstechnik, 51(4):A9–A12, 2003.

166. OpenSSL cryptographic library, December 2001. http://www.openssl.org/docs/
crypto/crypto.html.

167. OpenSSL SSL/TLS library, December 2001. http://www.openssl.org/docs/
ssl/ssl.html.

168. Thomas Ottman and Peter Widmayer. Algorithmen und Datenstrukturen (in
German). Informatik. BI-Wissenschaftsverlag, second edition, 1993.

169. Ruoming Pang and Vern Paxson. A high-level programming environment for
packet trace anonymization and transformation. In Proceedings of the 2003 Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, pages 339–351, Karlsruhe, Germany, August 2003. ACM SIG-
COMM, ACM Press.

170. Vern Paxson. Bro: A system for detecting network intruders in real-time. In
Proceedings of the 7th USENIX Security Symposium, San Antonio, Texas, January
1998.

171. Holger Petersen. Faires elektronisches Geld (in German). In Mit Sicherheit in die
Informationsgesellschaft, pages 427–444, Bonn, Germany, April 1997. Bundesamt
für Sicherheit in der Informationstechnik, SecuMedia, Ingelheim.

172. Markus Peuhkuri. A method to compress and anonymize packet traces. In Pro-
ceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement, pages
257–261, San Francisco, California, USA, November 2001. ACM SIGCOMM,
ACM Press.

References 299

173. Andreas Pfitzmann. Multilateral security: Enabling technologies and their evalua-
tion. In R. Wilhelm, editor, Informatics: 10 Years Back. 10 Years Ahead., number
2000 in Lecture Notes in Computer Science, pages 50–62. Springer, 2001.

174. Andreas Pfitzmann and Marit Hansen. Anonymity, unlinkability, unobservability,
pseudonymity, and identity management - a consolidated proposal for terminology.
dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.28.pdf, May 2006.

175. Birgit Pfitzmann, Michael Waidner, and Andreas Pfitzmann. Secure and anony-
mous electronic commerce: Providing legal certainty in open digital systems with-
out compromising anonymity. Technical Report RZ 3232 (#93278) 05/22/00,
IBM Zurich Research Lab, May 2000.

176. David Pointcheval. Self-scrambling anonymizers. In Y. Frankel, editor, Proceed-
ings of the 4th International Conference on Financial Cryptography (FC’00), num-
ber 1962 in Lecture Notes in Computer Science, pages 259–275, Anguilla, British
West Indies, February 2000. Springer.

177. Jean-Philippe Pouzol and Mireille Ducassé. From declarative signatures to misuse
IDS. In W. Lee, L. Mé, and A. Wespi, editors, Proceedings of the Fourth Inter-
national Symposium on Recent Advances in Intrusion Detection (RAID 2001),
number 2212 in Lecture Notes in Computer Science, pages 1–21, Davis, Califor-
nia, USA, October 2001. Springer.

178. Katherine E. Price. Host-based misuse detection and conventional operating sys-
tems’ audit data collection. Master’s thesis, Purdue university, December 1997.

179. Pew Internet & American Life Project. Trust and privacy online: Why amer-
icans want to rewrite the rules. http://www.pewinternet.org/reports/pdfs/
PIP_Trust_Privacy_Report.pdf, August 2000.

180. Kai Rannenberg, Andreas Pfitzmann, and Günter Müller. IT security and mul-
tilateral security. In G. Müller and K. Rannenberg, editors, Multilateral Security
in Communications, Information Security, pages 21–29. Addison Wesley, 1999.

181. Darren Reed. IP Filter. http://coombs.anu.edu.au/~avalon/ip-filter.html,
2001.

182. Darren Reed. Nsyslogd, 2001. http://coombs.anu.edu.au/~avalon/nsyslog.
html.

183. Virginia E. Rezmierski, Marshall R. Reese, and Nathaniel St. Clair II. University
systems security logging: who is doing it and how far can they go. Computers &
Security, 21(6):557–564, 2002.

184. Virginia E. Rezmierski and Nathaniel St. Clair II. Final report NSF-Lamp project:
Identifying where technology logging and monitoring for increased security end
and violations of personal privacy and student records begin. Technical Report
CSD1702, American Association of Collegiate Registrars and Admissions Officers,
2001. http://www.aacrao.org/publications/catalog/NSF-LAMP.pdf.

185. Konrad Rieck. Konzept zur datenschutzorientierten Verarbeitung von Solaris-
BSM-Audit-Daten (in German). Fachbereich Mathematik und Informatik, In-
stitut für Informatik, Freie Universität Berlin, January 2003. http://www.roqe.
org/bsmpseu.

186. Martin Roesch. Snort – lightweight intrusion detection for networks. In Proceed-
ings of LISA’99: 13th Systems Administration Conference, pages 229–238, Seattle,
Washington, November 1999. The Usenix Association, Usenix.

187. Martin Roesch. Snort Users Manual – Snort Release: 1.8.2, October 2001. http:
//www.snort.org/docs/SnortUsersManual.pdf.

188. Marshall T. Rose. The Open Book: A Practical Perspective on OSI. Prentice-Hall,
Englewood Cliffs, N. J., 1990.

300 References

189. Jarek Rossignac et al. GVU’s 10th WWW User Survey, Decem-
ber 1998. http://www.cc.gatech.edu/gvu/user_surveys/survey-1998-10/
graphs/graphs.html#privacy.

190. Alexander Roßnagel. Freiheit im Cyberspace (in German). Informatik Spektrum,
25(1):33–38, 2002.

191. Alexander Roßnagel and Philip Scholz. Datenschutz durch Anonymität und
Pseudonymität (in German). Zeitschrift für Informations-, Telekommunikations-
und Medienrecht (MMR), 2000(12):721–732, 2000.

192. James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language
Reference Manual. Object Technology Series. Addison Wesley, 2004.

193. Stuart Schechter, Todd Parnell, and Alexander Hartemink. Anonymous authen-
tication of membership in dynamic groups. In M. Franklin, editor, Proceedings
of the Third International Conference on Financial Cryptography (FC’99), num-
ber 1648 in Lecture Notes in Computer Science, pages 184–195, Anguilla, British
West Indies, February 1999. Springer.

194. Sebastian Schmerl. Entwurf und Implementierung einer effizienten Analyseeinheit
für Intrusion-Detection-Systeme (in German, diploma thesis). Master’s thesis,
Brandenburgische Technische Universität Cottbus, October 2004.

195. Michael Schneider and Ulrich Pordesch. Identitätsmangement. Datenschutz und
Datensicherheit, 22(11):645–649, 1998.

196. Bruce Schneier. Angewandte Kryptographie (in German). Addison-Wesley, Bonn,
first edition, 1996.

197. Bruce Schneier and John Kelsey. Cryptographic support for secure logs on
untrusted machines. In Dacier [57]. http://www.zurich.ibm.com/~dac/Prog_
RAID98/Table_of_content.html.

198. Thomas Schoen. Rechtliche Rahmenbedingungen zur Analyse von Log-Files (in
German). Datenschutz und Datensicherheit (DuD), 29(2):84–88, February 2005.

199. S. Seys, C. Díaz, Bart De Win, V. Naessens, C. Goemans, J. Claessens,
W. Moreau, B. De Decker, J. Dumortier, and B. Preneel. Anonymity and pri-
vacy in electronic services (APES) Deliverable 2 – Requirement study of different
applications. Technical report, K. U. Leuven, May 2001.

200. Adi Shamir. How to share a secret. Communications of the ACM, 22:612–613,
1979.

201. Victor Shoup. NTL: A library for doing number theory. http://www.shoup.net/
ntl/, 2003.

202. Stephen E. Smaha. SVR4++, A common audit trail interchange format for Unix.
Technical report, Haystack Laboratories, Inc., Austin, Texas, USA, October 1994.
Version 2.2.

203. Michael Sobirey. Aktuelle Anforderungen an Intrusion Detection-Systeme und
deren Berücksichtigung bei der Systemgestaltung von AID2 (in German). In
H. H. Brüggemann and W. Gerhardt-Häckl, editors, Proceedings of Verläßliche
IT-Systeme, DuD-Fachbeiträge, pages 351–370, Rostock, Germany, April 1995.
GI, Vieweg.

204. Michael Sobirey. Datenschutzorientiertes Intrusion Detection (in German). DuD-
Fachbeiträge. Vieweg, 1999.

205. Michael Sobirey, Simone Fischer-Hübner, and Kai Rannenberg. Pseudonymous
audit for privacy enhanced intrusion detection. In L. Yngström and J. Carlsen,
editors, Proceedings of the IFIP TC11 13th International Conference on Informa-
tion Security (SEC’97), pages 151–163, Copenhagen, Denmark, May 1997. IFIP,
Chapman & Hall, London.

References 301

206. Michael Sobirey, Birk Richter, and Hartmut König. The intrusion detection sys-
tem AID – Architecture and experiences in automated audit trail analysis. In
P. Horster, editor, Proceedings of the IFIP TC6/TC11 International Conference
on Communications and Multimedia Security, pages 278–290, Essen, Germany,
September 1996. IFIP, Chapman & Hall, London.

207. Gerald Spiegel. Spuren im Netz (in German). Datenschutz und Datensicherheit,
27(5):265–269, May 2003.

208. Sarah Spiekermann. Die Konsumenten der Anonymität (in German). Datenschutz
und Datensicherheit, 27(3):150–154, March 2003.

209. Markus Stadtler, Jean-Marc Piveteau, and Jan Camenisch. Fair blind signatures.
In F. Pichler, editor, Advances in Cryptology – EUROCRYPT 1995, number 219
in Lecture Notes in Computer Science, pages 209–219, Linz, Austria, April 1995.
Springer.

210. Sandra Steinbrecher and Stefan Köpsell. Modelling unlinkability. In R. Dingle-
dine, editor, Proceedings of the International Workshop on Privacy Enhancing
Technologies, number 2760 in Lecture Notes in Computer Science, pages 32–47,
Dresden, Germany, March 2003. Springer.

211. Douglas Robert Stinson. Cryptography — Theory and Practice, chapter Secret
Sharing Schemes, pages 326–331. Discrete mathematics and its applications. CRC
Press, first edition, 1995.

212. Stuart G. Stubblebine and Paul F. Syverson. Authentic attributes with fine-
grained anonymity protection. In Y. Frankel, editor, Proceedings of the 4th Inter-
national Conference on Financial Cryptography (FC’00), number 1962 in Lecture
Notes in Computer Science, pages 276–294, Anguilla, British West Indies, Febru-
ary 2000. Springer.

213. Stuart G. Stubblebine, Paul F. Syverson, and David M. Goldschlag. Unlinkable
serial transactions: Protocols and applications. ACM Transactions on Information
and System Security, 2(4):354–389, November 1999.

214. syslog.conf. Manual Page.
215. Jaques Traoré. Group signatures and their relevance to privacy-protecting offline

electronic cash systems. In J. Pieprzyk, R. Safavi-Naini, and J. Seberry, edi-
tors, Proceedings of the 4th Australasian Conference on Information Security and
Privacy (ACISP’99), number 1587 in Lecture Notes in Computer Science, pages
228–243, Wollongong, NSW, Australia, April 1999. Springer.

216. Els Van Herreweghen. Secure anonymous signature-based transactions. In
G. Goos, J. Hartmanis, and J. van Leeuwen, editors, Proceedings of the 6th Eu-
ropean Symposium on Reserach in Computer Security (ESORICS 2000), number
1895 in Lecture Notes in Computer Science, pages 55–71, Toulouse, France, Oc-
tober 2000. Springer.

217. Henk van Rossum, Huib Gardeniers, John Borking, et al. Privacy-enhancing
technologies: The path to anonymity, volume ii. Technical report, Regis-
tratiekamer Netherlands and Information and Privacy Commissioner Ontario,
Canada, Achtergrondstudies en Verkenningen 5B, Rĳswĳk, Netherlands, August
1995.

218. Giovanni Vigna, Steven T. Eckmann, and Richard Kemmerer. Attack languages.
In Proceedings of the IEEE Information Survivability Workshop, Boston, Mary-
land, USA, October 2000.

219. Giovanni Vigna, Richard A. Kemmerer, and Per Blix. Designing a web of highly-
configurable intrusion detection sensors. In W. Lee, L. Mé, and A. Wespi, editors,

302 References

Proceedings of the Fourth International Symposium on Recent Advances in Intru-
sion Detection (RAID 2001), number 2212 in Lecture Notes in Computer Science,
pages 69–84, Davis, California, USA, October 2001. Springer.

220. Samuel D. Warren and Louis D. Brandeis. The right to privacy. Harvard Law
Review, (5):193–220, 1890-91.

221. webwasher.com AG. Den Überblick behalten, Reporting mit WebWasherEE (in
German). http://www.webwasher.com/product_pdf/deutsch/Produktblatt_
Reporting.pdf, January 2003.

222. Alan Westin. Privacy and Freedom. Bodley Head, New York, 1987.
223. Jun Xu, Jinliang Fan, Mostafa Ammar, and Sue B. Moon. On the design and

performance of prefix-preserving IP traffic trace anonymization. In Proceedings
of the 1st ACM SIGCOMM Workshop on Internet Measurement, pages 263–266,
San Francisco, California, USA, November 2001. ACM SIGCOMM, ACM Press.

224. Detlef Zimmer. A Meta-Model for the Definition of the Semantics of Complex
Events in Active Database Management Systems. PhD thesis, University of Pader-
born, 1998.

225. Detlef Zimmer and Rainer Unland. On the semantics of complex events in active
database management systems. In Proceedings of the 15th International Confer-
ence on Data Engineering, pages 392–399. IEEE, IEEE Press, 1999.

Index

abstract event, 147
accountable, 47
accuracy, 39
action, 214
activating token set, 216
activating unified token, 216
activity, 203
activity level, 46, 98, 253, 254
agent, 49
AID, 73, 83
alarm, 58, 207
analysis component, 58
analysis context, 58
ANIDA, 84
anonymity, 33

conditional, 181
unconditional, 171

anonymous, 47
Anonymouse, 74
Apache, 193
appearance, 173
application-layer, 104
attacker, 49
attacker model, 57
attribute

dependable, 66
of property, 13
of property statement, 16

audit component, 58, 92
audit data, 29, 98, 203

in ASCII format, 147
of syslog, 29, 147

audit record, 58, 98, 147, 203
of syslog, 148, 151

of syslog pseudonymized, 151
audit service, 137
authentication of property statement, 13,

16
authentication server of Kerberos, 23, 72
authenticator, 68
authorization, 15
authorizer, 15
avoidance of data, 39

basic event, 206
billing data, 37
bound property, 15
bound step, 206
BROanonymize, 74
broker

of identity, 68
of profile, 68

bsmpseu, 74
building block, 172

application level, 175
connection level, 173

census decision, 35
certificate, 14
certification, 14
certifier, 15
child token, 257
CL-feature, 234
clarity of law, 34
clear-text-linkable feature, 234
clue, 58
compatible shares, 110
completeness of misuse detection, 203

304 Index

complex event, 206, 208
complex event instance, 207
complex event occurrence, 207
concurrency, 208
condition of disclosure, 46, 253, 254
conditional anonymity, 181
conjunction, 208, 220
consuming activity, 209
consuming edge, 212
context

of analysis, 58
of disclosure, 46, 253, 254

continuity, 208, 221
control block, 260
controlled disclosure of a pseudonym, 48
correctness of misuse detection, 203
credential, 71

one-show, 72

D-feature, 248
data avoidance, 39
data quality, 39, 41
dependable attribute, 66
DIMVA, 3
disclosure condition, 46, 98, 253, 254
disclosure context, 46, 97, 204, 253, 254
disclosure feature, 248
disclosure of a pseudonym, 45, 48
disclosure scenario, 204, 253, 254
disclosure transition, 248
disjunction, 208, 220

edge, 210, 211
consuming, 212, 220
input, 211
non-consuming, 212, 220
output, 211

entity, 13, 14, 17
property, 14

escape place, 212
escape transition, 214
escrow data, 133, 134
event, 98, 147, 203

abstract, 147
basic, 206
designator, 98
type, 98, 208, 213

event designator, 98
of syslog, 148

event report, 58

facility of syslog, 141
fairness, 39, 41
feature, 99

CL-, 234
clear-text-linkable, 234
D-, 248
disclosure, 248
PL-, 234
pseudonym-linkable, 234

feature designator, 98
feature type, 99
final place, 212
flow, 173
free property, 14

giver, 11
global setup, 175
group pseudonym, 48

ID, 47
IDA, 73, 82
identifiability of a person, 44
identity, 99
identity broker, 68
identity management

privacy-enhancing, 69
identity protector, 69
independence of infrastructure, 68
independence of service, 66
independence of user, 67
infomediary, 70
information of data subject, 39
informational self-determination, 31
informed consent, 39
initial marking of signature-net, 215
initial place, 212
input edge, 211
input place, 212, 213
input token set, 216
instance of complex event, 207
inter-event condition, 209, 213, 220
interior place, 212
intra-event condition, 209, 213, 220
intrusion detection

signature, 204
IP filter, 139
IPSEC, 143

Index 305

Kerberos, 23
authentication server, 23, 72
ticket granting server, 23, 72, 85

legal purpose, 34
linkable, 47
Linux, 160
local setup, 174

manifestation, 203
marking, 215

stable, 216
unstable, 216

match
valid, 110

mismatch, 110
misuse detection, 203

completeness, 203
correctness, 203
signature, 204

misuse scenario, 203
misuse scenario semantics

concurrency, 208
conjunction, 208, 220
continuity, 208, 221
disjunction, 208, 220
inter-event condition, 209, 220
intra-event condition, 209, 220
negation, 208, 221
repetition, 208, 221
sequence, 208, 220
simultaneous, 208, 221
step instance consumption, 209, 221
step instance selection, 209, 221

multilateral security, 43, 66

necessity, 39
negation, 208, 221
non-consuming activity, 209
non-consuming edge, 212
notification of data subject, 39

object, 47
accountable, 47
anonymous, 47, 48
linkable, 47
pseudonymized, 48
pseudonymous, 48
reidentified, 48
unlinkable, 47

observation of activity, 46, 97, 203
OpenBSD, 160
organizational purpose binding of

pseudonym disclosure, 49
output edge, 211
output place, 212, 213

parent token, 257
personal identifiability, 44
Petri-net, 210, 212
PIM, 69
PL-feature, 234
place, 210, 212

escape, 212
final, 212
initial, 212
input, 212, 213
interior, 212
output, 212, 213

principal, 13, 14, 47
priority of syslog, 141
privacy, 34
profile broker, 68
property, 13

attribute, 13
bound, 15
free, 14
of entity, 14

property statement, 13, 17
attributes, 16
authentication, 13, 16
certification, 14
component, 15
responsible agent, 13, 15
subject, 13, 15, 16
validity, 13, 16
verification, 17

proportionateness, 34, 36
protector of identity, 69
Pseudo/CoRe, 159, 180
pseudonym, 47

of group, 48
verifiable, 67

pseudonym disclosure, 45, 48
controlled, 48
uncontrolled, 53

pseudonym mapping, 44, 48, 92
pseudonym-linkable feature, 234
pseudonymity-layer, 104

306 Index

pseudonymization, 48
direct, 77
indirect, 75

pseudonymize, 47
pseudonymizer, 92, 178
pseudonymizers

AID, 73, 83
ANIDA, 84
Anonymouse, 74
BROanonymize, 74
bsmpseu, 74
IDA, 73, 82
Lundin, 73, 84
Pseudo/CoRe, 74, 159, 180
WebWasher, 74

purpose binding, 36, 40
organizational

of pseudonym disclosure, 49
technical, 67

of pseudonym disclosure, 46, 50
of pseudonym linkability, 53

purpose of analysis, 58

quality of data, 39, 41

RAID, 3
redirector, 145
reduction of data, 39
regular transition, 214
reidentification, 48
reidentifier, 187
repetition, 208, 221
response component, 58
responsible agent, 15

of property statement, 13, 15
rule of law, 34

safeguard, 36, 41
scheme description, 261
security multilateral, 43, 66
sensitivity of personal data, 36
separation of power, 36
sequence, 208, 220
serial signature-net, 223
severity of syslog, 141
sibling token, 257
signature, 204
signature-net, 210

edge, 210, 211

consuming, 212, 220
input, 211
non-consuming, 212, 220
output, 211

marking, 215
initial, 215
stable, 216
unstable, 216

place, 210, 212
escape, 212
final, 212
initial, 212
input, 212, 213
interior, 212
output, 212, 213

serial, 223
token, 214

child, 257
parent, 257
sibling, 257

transition, 210, 212
action, 214
activating token set, 216
activating unified token, 216
disclosure, 248
escape, 214
input token set, 216
inter-event condition, 213
intra-event condition, 213
regular, 214
spontaneous, 214
token binding, 213
token variable, 213
unifiable token set, 216
unified token, 216

simultaneous, 208, 221
site security officer, 58
Snort, 143
Solaris, 160
spontaneous transition, 214
SSO, 58
STAT, 143
statement of property, 13
step, 208

bound, 206
instantiated, 207
of complex event, 206

step instance consumption, 209, 221
step instance selection, 209, 221

Index 307

stock data, 36
subject, 49

of property statement, 13, 15, 16
syslog, 29, 139, 141, 193
syslog API, 145, 158, 161
syslog audit data, 29, 142, 147
syslog audit record, 142
syslog facility, 141
syslog options, 165
syslog priority, 141
syslog protocol, 143
syslog severity, 141
syslogd, 145

taker, 11
technical purpose binding, 67

of pseudonym disclosure, 46, 50
of pseudonym linkability, 53

ticket granting server of Kerberos, 23, 72,
85

token, 214
child, 257
parent, 257
sibling, 257

token binding, 213
token variable, 213
transition, 210, 212

action, 214
activating token set, 216

activating unified token, 216
disclosure, 248
escape, 214
input token set, 216
inter-event condition, 213
intra-event condition, 213
regular, 214
spontaneous, 214
token binding, 213
token variable, 213
unifiable token set, 216
unified token, 216

transparency, 36, 39
trust, 13

unconditional anonymity, 171
uncontrolled disclosure of a pseudonym,

53
unifiable token set, 216
unified token, 216
unlinkable, 47
usage data, 37

validity of property statement, 13, 16
verifiable pseudonym, 67
verification of property statement, 17

WebWasher, 74

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

